Impact of hemp woody core surface chemical modification on wettability of epoxyurethane composites

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
T. Samoilenko, L. Yashchenko, Nataliia Yarova, O. Brovko
{"title":"Impact of hemp woody core surface chemical modification on wettability of epoxyurethane composites","authors":"T. Samoilenko, L. Yashchenko, Nataliia Yarova, O. Brovko","doi":"10.1080/09276440.2023.2229585","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hemp woody core (HWC) that is a by-product of hemp industry was subjected to pre-treatment with alkali (mercerisation) and further functionalisation with epoxidised soybean oil (ESO) or (3-aminopropyl)triethoxysilane (APS). Mercerisation resulted in more developed surface area and rearrangement of fibrils into denser packing. FTIR spectroscopy analysis revealed the presence of hydrogen bonds of HWC with modifier in case of ESO application as well as hydrogen and Si-O-C covalent bonds in case of APS application. Two types of Si-containing epoxyurethanes were filled with 60% of HWC with different surface modification: the first polymer contained diglycidyl ether of bisphenol-A (DGEBA), while the second one contained ESO as an epoxy component. The investigation of the surface properties of composites found that the ones based on ESO epoxyurethane were more hydrophobic than their respective counterparts. Hydrophilicity was reduced by functionalisation of HWC providing a contact angle augment from 54°for DGEBA-containing sample with raw HWC to 86° for the one with oil modified HWC. The results of water uptake test showed that regardless of the matrix the composites reinforced with functionalised HWC exhibited about 40% less gain in weight at the saturation level than their analogues reinforced with untreated or alkali treated HWC. Graphical abstract","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"70 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2229585","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Hemp woody core (HWC) that is a by-product of hemp industry was subjected to pre-treatment with alkali (mercerisation) and further functionalisation with epoxidised soybean oil (ESO) or (3-aminopropyl)triethoxysilane (APS). Mercerisation resulted in more developed surface area and rearrangement of fibrils into denser packing. FTIR spectroscopy analysis revealed the presence of hydrogen bonds of HWC with modifier in case of ESO application as well as hydrogen and Si-O-C covalent bonds in case of APS application. Two types of Si-containing epoxyurethanes were filled with 60% of HWC with different surface modification: the first polymer contained diglycidyl ether of bisphenol-A (DGEBA), while the second one contained ESO as an epoxy component. The investigation of the surface properties of composites found that the ones based on ESO epoxyurethane were more hydrophobic than their respective counterparts. Hydrophilicity was reduced by functionalisation of HWC providing a contact angle augment from 54°for DGEBA-containing sample with raw HWC to 86° for the one with oil modified HWC. The results of water uptake test showed that regardless of the matrix the composites reinforced with functionalised HWC exhibited about 40% less gain in weight at the saturation level than their analogues reinforced with untreated or alkali treated HWC. Graphical abstract
大麻木芯表面化学改性对环氧聚氨酯复合材料润湿性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信