{"title":"Impact of microbiota on breast cancer hormone therapy.","authors":"Safae Terrisse, Laurence Zitvogel, Guido Kroemer","doi":"10.15698/cst2023.03.277","DOIUrl":null,"url":null,"abstract":"<p><p>Recent observations indicate that the pathogenesis and prognosis of hormone-receptor breast cancer is not only dictated by the properties of the malignant cells but also by immune and microbial parameters. Thus, the immunosurveillance system retards the development of hormone-positive breast cancer and contributes to the therapeutic efficacy of estrogen receptor antagonists and aromatase inhibitors. Moreover, the anticancer immune response is profoundly modulated by the local and intestinal microbiota, which influences cancer cell-intrinsic signaling pathways, affects the composition and function of the immune infiltrate present in the tumor microenvironment and modulates the metabolism of estrogens. Indeed, specific bacteria in the gut produce enzymes that affect the enterohepatic cycle of estrogen metabolites, convert estrogens into androgens or generate estrogen-like molecules. The knowledge of these circuitries is in its infancy, calling for further in-depth analyses.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012050/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2023.03.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Recent observations indicate that the pathogenesis and prognosis of hormone-receptor breast cancer is not only dictated by the properties of the malignant cells but also by immune and microbial parameters. Thus, the immunosurveillance system retards the development of hormone-positive breast cancer and contributes to the therapeutic efficacy of estrogen receptor antagonists and aromatase inhibitors. Moreover, the anticancer immune response is profoundly modulated by the local and intestinal microbiota, which influences cancer cell-intrinsic signaling pathways, affects the composition and function of the immune infiltrate present in the tumor microenvironment and modulates the metabolism of estrogens. Indeed, specific bacteria in the gut produce enzymes that affect the enterohepatic cycle of estrogen metabolites, convert estrogens into androgens or generate estrogen-like molecules. The knowledge of these circuitries is in its infancy, calling for further in-depth analyses.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.