A Fast Algorithm for Estimating Parameters of a Multivariate Autoregressive Moving Average Processes

Emilie Epeka Mbambe, Angèle Yule Sotazo, Jacques Sabiti Kiseta, Roger Akumoso Liendi
{"title":"A Fast Algorithm for Estimating Parameters of a Multivariate Autoregressive Moving Average Processes","authors":"Emilie Epeka Mbambe, Angèle Yule Sotazo, Jacques Sabiti Kiseta, Roger Akumoso Liendi","doi":"10.47285/isr.v2i2.103","DOIUrl":null,"url":null,"abstract":"We propose in this paper a fast and iterative algorithm for estimating the parameters of a Gaussian vector autoregressive-moving average (VARMA) model. This algorithm is a multivariate generalization of that suggested by Sabiti (1996) for estimating the parameters of a univariate ARMA(p,q) process. It is proposed, mainly for providing initial estimators for the iterative maximization of a log-likelihood function. Comparisons about the number of computations in terms of multiplication operations are made with a method that uses gradients to locate a maximum of the likelihood function and the fast method suggested by Spliid (1983).","PeriodicalId":81558,"journal":{"name":"International science review series","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International science review series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47285/isr.v2i2.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose in this paper a fast and iterative algorithm for estimating the parameters of a Gaussian vector autoregressive-moving average (VARMA) model. This algorithm is a multivariate generalization of that suggested by Sabiti (1996) for estimating the parameters of a univariate ARMA(p,q) process. It is proposed, mainly for providing initial estimators for the iterative maximization of a log-likelihood function. Comparisons about the number of computations in terms of multiplication operations are made with a method that uses gradients to locate a maximum of the likelihood function and the fast method suggested by Spliid (1983).
多元自回归移动平均过程参数的快速估计算法
本文提出了一种快速迭代的高斯向量自回归移动平均(VARMA)模型参数估计算法。该算法是Sabiti(1996)提出的用于估计单变量ARMA(p,q)过程参数的多元推广。它的提出,主要是为对数似然函数的迭代最大化提供初始估计。用Spliid(1983)提出的利用梯度定位似然函数最大值的方法和快速方法比较乘法运算的计算次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信