A. Tedeschi, Daniele Midi, F. Benedetto, E. Bertino
{"title":"Statistically-enhancing the diagnosis of packet losses in WSNs","authors":"A. Tedeschi, Daniele Midi, F. Benedetto, E. Bertino","doi":"10.1504/IJMNDI.2017.082795","DOIUrl":null,"url":null,"abstract":"Packet losses, an important class of adverse events in wireless sensor networks, can be caused by either misbehaving nodes, or attacks focused on the wireless links. Understanding the underlying cause is critical for effective response measures to restore network functionality. Midi et al. (2015) proposed an approach for fine-grained analysis (FGA) of packet losses that profiles the wireless links between the nodes using resident metrics, such as the received signal strength indicator (RSSI) and the link quality indicator (LQI), to accurately diagnose the root causes of the losses. In our work, we design an approach that enhances such previous approach by leveraging a statistical model for determining optimal system thresholds based on the variances of RSSI and LQI, and also supporting individual per-link thresholds. Our validation through real sensor data shows that our model is accurate and leads to an optimal fine-grained analysis of the underlying causes of packet losses.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"62 1","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMNDI.2017.082795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1
Abstract
Packet losses, an important class of adverse events in wireless sensor networks, can be caused by either misbehaving nodes, or attacks focused on the wireless links. Understanding the underlying cause is critical for effective response measures to restore network functionality. Midi et al. (2015) proposed an approach for fine-grained analysis (FGA) of packet losses that profiles the wireless links between the nodes using resident metrics, such as the received signal strength indicator (RSSI) and the link quality indicator (LQI), to accurately diagnose the root causes of the losses. In our work, we design an approach that enhances such previous approach by leveraging a statistical model for determining optimal system thresholds based on the variances of RSSI and LQI, and also supporting individual per-link thresholds. Our validation through real sensor data shows that our model is accurate and leads to an optimal fine-grained analysis of the underlying causes of packet losses.
期刊介绍:
The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.