Daisuke Ito , Yasushi Saito , Hirotaka Sato , Takenao Shinohara
{"title":"Visualization of Solidification Process in Lead-bismuth Eutectic","authors":"Daisuke Ito , Yasushi Saito , Hirotaka Sato , Takenao Shinohara","doi":"10.1016/j.phpro.2017.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed neutron transmission spectroscopy was applied to clarify a phase change phenomena of lead-bismuth eutectics (LBE). The melting and solidification behaviors of the LBE should be well understood to enhance the safety of an LBE-cooled accelerator driven system. In this study, the heating experiments were performed using a rectangular test section and LBE phase change process was visualized by the energy-resolved pulsed neutron imaging at BL22 RADEN facility in J-PARC and the solid/liquid interface was identified from the radiograph and Bragg edge information. The transient location of the interface was compared with measured temperature profiles and it would be useful to evaluate the LBE thermal properties.</p></div>","PeriodicalId":20407,"journal":{"name":"Physics Procedia","volume":"88 ","pages":"Pages 58-63"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phpro.2017.06.007","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875389217300573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Pulsed neutron transmission spectroscopy was applied to clarify a phase change phenomena of lead-bismuth eutectics (LBE). The melting and solidification behaviors of the LBE should be well understood to enhance the safety of an LBE-cooled accelerator driven system. In this study, the heating experiments were performed using a rectangular test section and LBE phase change process was visualized by the energy-resolved pulsed neutron imaging at BL22 RADEN facility in J-PARC and the solid/liquid interface was identified from the radiograph and Bragg edge information. The transient location of the interface was compared with measured temperature profiles and it would be useful to evaluate the LBE thermal properties.