Riemann solitons on para-Sasakian geometry

IF 1 Q1 MATHEMATICS
K. De, U. De
{"title":"Riemann solitons on para-Sasakian geometry","authors":"K. De, U. De","doi":"10.15330/cmp.14.2.395-405","DOIUrl":null,"url":null,"abstract":"The goal of the present article is to investigate almost Riemann soliton and gradient almost Riemann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if $(g, Z,\\lambda)$ is an almost Riemann soliton on a para-Sasakian manifold $M^3$, then it reduces to a Riemann soliton and $M^3$ is of constant sectional curvature $-1$, provided the soliton vector $Z$ has constant divergence. Besides these, we prove that if $Z$ is pointwise collinear with the characteristic vector field $\\xi$, then $Z$ is a constant multiple of $\\xi$ and the manifold is of constant sectional curvature $-1$. Moreover, the almost Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold $M^3$ admits gradient almost Riemann soliton, then $M^3$ is locally isometric to the hyperbolic space $H^{3}(-1)$. Finally, we construct an example to justify some results of our paper.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.395-405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of the present article is to investigate almost Riemann soliton and gradient almost Riemann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if $(g, Z,\lambda)$ is an almost Riemann soliton on a para-Sasakian manifold $M^3$, then it reduces to a Riemann soliton and $M^3$ is of constant sectional curvature $-1$, provided the soliton vector $Z$ has constant divergence. Besides these, we prove that if $Z$ is pointwise collinear with the characteristic vector field $\xi$, then $Z$ is a constant multiple of $\xi$ and the manifold is of constant sectional curvature $-1$. Moreover, the almost Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold $M^3$ admits gradient almost Riemann soliton, then $M^3$ is locally isometric to the hyperbolic space $H^{3}(-1)$. Finally, we construct an example to justify some results of our paper.
准sasakian几何上的Riemann孤子
本文的目的是研究三维拟sasakian流形上的几乎黎曼孤子和梯度几乎黎曼孤子。首先证明了如果$(g, Z,\lambda)$是拟sasakian流形$M^3$上的一个几乎黎曼孤子,那么当孤子向量$Z$具有恒定散度时,它就可以化为一个恒定截面曲率的黎曼孤子,并且$M^3$具有恒定截面曲率$-1$。此外,我们证明了如果$Z$与特征向量场$\xi$点共线,则$Z$是$\xi$的常数倍,流形具有恒定的截面曲率$-1$。此外,几乎黎曼孤子正在膨胀。进一步证明了若拟sasakian流形$M^3$允许梯度几乎Riemann孤子,则$M^3$局部等距于双曲空间$H^{3}(-1)$。最后,我们构造了一个例子来证明本文的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信