L. Nguyen, L. Lefévre, D. Genon-Catalot, Youness Lami
{"title":"Asynchronous information consensus in distributed control of irrigation canals","authors":"L. Nguyen, L. Lefévre, D. Genon-Catalot, Youness Lami","doi":"10.1109/ETFA.2016.7733596","DOIUrl":null,"url":null,"abstract":"In distributed model predictive control, accounting for the interactions of subsystems requires exchanging information between controllers. However, challenges arise when controllers may lose the synchronization and when shared information may encounter the divergence due to the switching topology and the imperfection in communication. Managing divergent (or outdated) information is considered in this paper as a consensus problem and solved by an asynchronous consensus protocol. This approach based on multi-agent system paradigm to distributed control requires each controller to agree on some data values needed during action computation with its neighbors. Under certain assumptions, the convergence of consensus protocol is analytically obtained with various communication patterns (for example, directed and delayed communication). As a result, the performance of control system is improved in comparison with the decentralized strategy, and approached to the distributed strategy with sequential timing. Some simulation examples are given to illustrate the efficiency of this approach for the control of irrigation canals modeled by the Lattice Boltzmann method.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"121 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In distributed model predictive control, accounting for the interactions of subsystems requires exchanging information between controllers. However, challenges arise when controllers may lose the synchronization and when shared information may encounter the divergence due to the switching topology and the imperfection in communication. Managing divergent (or outdated) information is considered in this paper as a consensus problem and solved by an asynchronous consensus protocol. This approach based on multi-agent system paradigm to distributed control requires each controller to agree on some data values needed during action computation with its neighbors. Under certain assumptions, the convergence of consensus protocol is analytically obtained with various communication patterns (for example, directed and delayed communication). As a result, the performance of control system is improved in comparison with the decentralized strategy, and approached to the distributed strategy with sequential timing. Some simulation examples are given to illustrate the efficiency of this approach for the control of irrigation canals modeled by the Lattice Boltzmann method.