{"title":"Bogolyubov Gaussian Measure in Quantum Statistical Mechanics","authors":"D. P. Sankovich","doi":"10.13189/UJPA.2019.130201","DOIUrl":null,"url":null,"abstract":"The first steps in the application of methods for integrating functions defined on abstract sets were taken by Wiener. Most widely, the ideas of functional integration were developed in Feynman's works. The Feynman continual integral is well known to a wide community of physicists. Along with this, there is another approach to the construction of a functional integral in quantum physics. This approach was proposed by Bogolyubov. Bogolyubov's methods are relevant in quantum statistical physics, and have natural ties with probability theory. We review some mathematical results of integration with respect to a special Gaussian measure that arises in the statistical theory for quantum systems. It is shown that the Gibbs equilibrium averages of the chronological products of Bose operators can be represented as functional integrals with respect to this measure (the Bogolyubov measure). Some properties of this measure are studied. We rewrite partition function of many particle Bose systems in terms of Bogolyubov functional integral.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2019.130201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The first steps in the application of methods for integrating functions defined on abstract sets were taken by Wiener. Most widely, the ideas of functional integration were developed in Feynman's works. The Feynman continual integral is well known to a wide community of physicists. Along with this, there is another approach to the construction of a functional integral in quantum physics. This approach was proposed by Bogolyubov. Bogolyubov's methods are relevant in quantum statistical physics, and have natural ties with probability theory. We review some mathematical results of integration with respect to a special Gaussian measure that arises in the statistical theory for quantum systems. It is shown that the Gibbs equilibrium averages of the chronological products of Bose operators can be represented as functional integrals with respect to this measure (the Bogolyubov measure). Some properties of this measure are studied. We rewrite partition function of many particle Bose systems in terms of Bogolyubov functional integral.