Minimum noise subspace: concepts and applications

K. Abed-Meraim, Y. Hua, A. Belouchrani
{"title":"Minimum noise subspace: concepts and applications","authors":"K. Abed-Meraim, Y. Hua, A. Belouchrani","doi":"10.1109/ICICS.1997.647069","DOIUrl":null,"url":null,"abstract":"We present the concepts and some applications of the minimum noise subspace (MNS) technique. The MNS technique has been first introduced as a computationally efficient subspace technique which exploits a minimum number of noise vectors for multichannel blind system identification. It is shown that a noise subspace basis can be obtained in a parallel structure from a set of tuples (combinations) of system outputs that form a properly connected sequence (PCS). The technique of the MNS and particularly the concept of PCS turn out to be powerful tools that can be applied for number of array processing problems. To illustrate the potential of this technique, we present three successful applications related to the problems of blind system identification, source localization, and array calibration respectively.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"53 1","pages":"118-121 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.647069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present the concepts and some applications of the minimum noise subspace (MNS) technique. The MNS technique has been first introduced as a computationally efficient subspace technique which exploits a minimum number of noise vectors for multichannel blind system identification. It is shown that a noise subspace basis can be obtained in a parallel structure from a set of tuples (combinations) of system outputs that form a properly connected sequence (PCS). The technique of the MNS and particularly the concept of PCS turn out to be powerful tools that can be applied for number of array processing problems. To illustrate the potential of this technique, we present three successful applications related to the problems of blind system identification, source localization, and array calibration respectively.
最小噪声子空间:概念与应用
介绍了最小噪声子空间(MNS)技术的概念和一些应用。MNS技术首先作为一种计算效率高的子空间技术被引入,该技术利用最小数量的噪声矢量来进行多通道盲系统识别。研究表明,在并联结构中,噪声子空间基可以由系统输出的一组元组(组合)组成一个适当连接序列(PCS)。MNS技术,特别是PCS的概念是一种强大的工具,可以应用于许多阵列处理问题。为了说明这种技术的潜力,我们分别介绍了与盲系统识别、源定位和阵列校准问题相关的三个成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信