Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY
M. Mirzaei, R. S. Ahangari
{"title":"Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures","authors":"M. Mirzaei, R. S. Ahangari","doi":"10.7508/IJND.2016.04.003","DOIUrl":null,"url":null,"abstract":"Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.
BN、BP、AlN和AlP类石墨烯结构四极偶联常数的密度泛函探索
研究了氮化硼(BN)、磷化硼(BP)、氮化铝(AlN)和磷化铝(AlP)结构的类石墨烯单层(g -单层)的稳定性和原子水平四极偶联常数(CQ)性质。为此,密度泛函理论(DFT)计算已被用于优化模型结构和评估CQ参数。优化结果表明,氮化硼g -单分子膜的形成、极性和半导体性能优于其他已研究的g -单分子膜。此外,原子水平的CQ参数还表明,单分子膜顶端的原子在其他原子中活性最高,并且单分子膜不同位置的原子具有不同的性质。电负性的差异对CQ性质的大小也很重要,与BP和AlP g单层相比,BN和AlN g单层中B和Al原子的CQ参数值更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信