Estimate the Survival Function of the Power Lomax (POLO) Distribution by Using the Simulated Annealing Algorithm

Mustafa A. Al-Saaedy, Emad H.Aboudi
{"title":"Estimate the Survival Function of the Power Lomax (POLO) Distribution by Using the Simulated Annealing Algorithm","authors":"Mustafa A. Al-Saaedy, Emad H.Aboudi","doi":"10.22401/anjs.25.1.05","DOIUrl":null,"url":null,"abstract":"In this paper the survival function of the Power Lomax distribution is estimated by two methods of estimation, which are the maximum likelihood method and the moment method. The obtained estimators contain non-linear equations that cannot be solved by ordinary mathematical methods and do not represent the estimations clearly, so a simulated annealing algorithm was used to solve this problem, then simulation was used to compare the estimation methods based on the statistical comparison criterion mean squares of integral error (IMSE) and to get the best estimator for survival function. The results show the preference the maximum likelihood method than the moment method.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.25.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the survival function of the Power Lomax distribution is estimated by two methods of estimation, which are the maximum likelihood method and the moment method. The obtained estimators contain non-linear equations that cannot be solved by ordinary mathematical methods and do not represent the estimations clearly, so a simulated annealing algorithm was used to solve this problem, then simulation was used to compare the estimation methods based on the statistical comparison criterion mean squares of integral error (IMSE) and to get the best estimator for survival function. The results show the preference the maximum likelihood method than the moment method.
利用模拟退火算法估计幂洛max (POLO)分布的生存函数
本文用极大似然法和矩量法两种估计方法估计了幂Lomax分布的生存函数。由于得到的估计量包含一般数学方法无法求解的非线性方程,不能清晰地表示估计量,因此采用模拟退火算法解决了这一问题,然后采用仿真方法对基于统计比较准则积分误差均方(IMSE)的估计方法进行了比较,得到了生存函数的最佳估计量。结果表明,极大似然法比矩量法更适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信