Diane Clemens-Knott , Kathleen DeGraaff Surpless , Andrew P. Barth , Joseph L. Wooden
{"title":"Leveraging detrital zircon geochemistry to study deep arc processes: REE-rich magmas mobilized by Jurassic rifting of the Sierra Nevada arc","authors":"Diane Clemens-Knott , Kathleen DeGraaff Surpless , Andrew P. Barth , Joseph L. Wooden","doi":"10.1016/j.ringeo.2021.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Anomalous trace element compositions of Middle to Late Jurassic detrital zircon separated from Sierra Nevada forearc and intra-arc strata reveal processes of differentiation occurring within the deep arc lithosphere. REE-Sc-Nb-Ti-Hf-U-Th covariations define three populations of atypically REE-rich grains that we interpret as crystallizing from (1) differentiates produced by olivine+clinopyroxene+plagioclase+garnet±ilmenite fractionation; (2) mixing between mafic arc magmas and partial melts of Proterozoic Mojave province crust; and (3) compositionally transient, low Gd/Yb magmas generated by hornblende resorption during decompression. We interpret a fourth population of Middle Jurassic to Early Cretaceous zircons having REE contents similar to “typical” arc zircon but with atypically high Gd/Yb ratios as having crystallized from partial melts of recycled arc crust and from deep-arc differentiates that evolved down-temperature through hornblende saturation. We hypothesize that latest Jurassic extension ripped open the arc, facilitating upward migration and eruption of geochemically anomalous zircon-bearing magmas. The anomalous compositions relative to “typical” arc zircon imply that these zircons and their host magmas rarely reach the upper arc crust, where eruption and/or erosion would release their zircon cargo to the clastic system. Focusing on the trace element compositions of zircons of syn-extensional age represents a productive new strategy for learning about deep magmatic reservoirs and early differentiation pathways within the thick lithosphere of continental margin arcs.</p></div>","PeriodicalId":101085,"journal":{"name":"Results in Geochemistry","volume":"4 ","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ringeo.2021.100010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Geochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666277921000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalous trace element compositions of Middle to Late Jurassic detrital zircon separated from Sierra Nevada forearc and intra-arc strata reveal processes of differentiation occurring within the deep arc lithosphere. REE-Sc-Nb-Ti-Hf-U-Th covariations define three populations of atypically REE-rich grains that we interpret as crystallizing from (1) differentiates produced by olivine+clinopyroxene+plagioclase+garnet±ilmenite fractionation; (2) mixing between mafic arc magmas and partial melts of Proterozoic Mojave province crust; and (3) compositionally transient, low Gd/Yb magmas generated by hornblende resorption during decompression. We interpret a fourth population of Middle Jurassic to Early Cretaceous zircons having REE contents similar to “typical” arc zircon but with atypically high Gd/Yb ratios as having crystallized from partial melts of recycled arc crust and from deep-arc differentiates that evolved down-temperature through hornblende saturation. We hypothesize that latest Jurassic extension ripped open the arc, facilitating upward migration and eruption of geochemically anomalous zircon-bearing magmas. The anomalous compositions relative to “typical” arc zircon imply that these zircons and their host magmas rarely reach the upper arc crust, where eruption and/or erosion would release their zircon cargo to the clastic system. Focusing on the trace element compositions of zircons of syn-extensional age represents a productive new strategy for learning about deep magmatic reservoirs and early differentiation pathways within the thick lithosphere of continental margin arcs.