Choose a Job You Love: Predicting Choices of GitHub Developers

R. Nielek, Oskar Jarczyk, Kamil Pawlak, Leszek Bukowski, Roman Bartusiak, A. Wierzbicki
{"title":"Choose a Job You Love: Predicting Choices of GitHub Developers","authors":"R. Nielek, Oskar Jarczyk, Kamil Pawlak, Leszek Bukowski, Roman Bartusiak, A. Wierzbicki","doi":"10.1109/WI.2016.0037","DOIUrl":null,"url":null,"abstract":"GitHub is one of the most commonly used web-based code repository hosting service. Majority of projects hosted on GitHub are really small but, on the other hand, developers spend most of their time working in medium to large repositories. Developers can freely join and leave projects following their current needs and interests. Based on real data collected from GitHub we have tried to predict which developer will join which project. A mix of carefully selected list of features and machine learning techniques let us achieve a precision of 0.886, in the best case scenario, where there is quite a long history of a user and a repository in the system. Even when proposed classifier faces a cold start problem, it delivers precision equal to 0.729 which is still acceptable for automatic recommendation of noteworthy projects for developers.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"28 1","pages":"200-207"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

GitHub is one of the most commonly used web-based code repository hosting service. Majority of projects hosted on GitHub are really small but, on the other hand, developers spend most of their time working in medium to large repositories. Developers can freely join and leave projects following their current needs and interests. Based on real data collected from GitHub we have tried to predict which developer will join which project. A mix of carefully selected list of features and machine learning techniques let us achieve a precision of 0.886, in the best case scenario, where there is quite a long history of a user and a repository in the system. Even when proposed classifier faces a cold start problem, it delivers precision equal to 0.729 which is still acceptable for automatic recommendation of noteworthy projects for developers.
选择你喜欢的工作:预测GitHub开发人员的选择
GitHub是最常用的基于web的代码库托管服务之一。GitHub上托管的大多数项目都很小,但另一方面,开发人员将大部分时间花在中型到大型存储库上。开发人员可以根据他们当前的需求和兴趣自由地加入和离开项目。根据从GitHub收集的真实数据,我们试图预测哪个开发人员将加入哪个项目。精心挑选的功能列表和机器学习技术的组合让我们在最好的情况下实现了0.886的精度,在这种情况下,系统中有相当长的用户和存储库历史。即使提出的分类器面临冷启动问题,它提供的精度等于0.729,这对于开发人员自动推荐值得注意的项目仍然是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信