Symplectic trisections and the adjunction inequality

Peter Lambert-Cole
{"title":"Symplectic trisections and the adjunction inequality","authors":"Peter Lambert-Cole","doi":"10.14288/1.0395253","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a version of the adjunction inequality for closed symplectic 4-manifolds. As in a previous paper on the Thom conjecture, we use contact geometry and trisections of 4-manifolds to reduce this inequality to the slice-Bennequin inequality for knots in the 4-ball. As this latter result can be proved using Khovanov homology, we completely avoid gauge theoretic techniques. This inequality can be used to give gauge-theory-free proofs of several landmark results in 4-manifold topology, such as detecting exotic smooth structures, the symplectic Thom conjecture, and exluding connected sum decompositions of certain symplectic 4-manifolds.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"1963 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14288/1.0395253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we establish a version of the adjunction inequality for closed symplectic 4-manifolds. As in a previous paper on the Thom conjecture, we use contact geometry and trisections of 4-manifolds to reduce this inequality to the slice-Bennequin inequality for knots in the 4-ball. As this latter result can be proved using Khovanov homology, we completely avoid gauge theoretic techniques. This inequality can be used to give gauge-theory-free proofs of several landmark results in 4-manifold topology, such as detecting exotic smooth structures, the symplectic Thom conjecture, and exluding connected sum decompositions of certain symplectic 4-manifolds.
辛三分和附加不等式
本文建立了闭辛4流形的附加不等式的一个版本。在之前关于Thom猜想的论文中,我们使用了4流形的接触几何和三切面来将这个不等式简化为4球结的片-本尼昆不等式。由于后一个结果可以用Khovanov同调证明,我们完全避免了规范理论技术。这个不等式可以用来给出4流形拓扑中几个标志性结果的无规理论证明,如检测奇异光滑结构、辛托姆猜想和排除某些辛4流形的连通和分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信