Aortic Arch Anatomy Characterization from MRA: A CNN-Based Segmentation Approach

Mounir Lahlouh, Y. Chenoune, R. Blanc, J. Szewczyk, Nicolas Passat
{"title":"Aortic Arch Anatomy Characterization from MRA: A CNN-Based Segmentation Approach","authors":"Mounir Lahlouh, Y. Chenoune, R. Blanc, J. Szewczyk, Nicolas Passat","doi":"10.1109/ISBI52829.2022.9761708","DOIUrl":null,"url":null,"abstract":"Neurovascular pathologies are often treated with the help of imaging to guide catheters inside arteries. However, positioning a microcatheter into the aortic arch and threading it through blood vessels for embolization, mechanical thrombectomy or stenting is a challenging task. Indeed, adverse aortic arch anatomies are frequently encountered, especially when the aortic arch is dilated, or the supra-aortic branches are elongated and tortuous. In this article, we propose a pipeline using convolutional neural networks for the segmentation of the aortic arch from magnetic resonance images for further anatomy classification purpose. This pipeline is composed of two successive modules, dedicated to the localization and the accurate segmentation of the aortic arch and the origin of supra-aortic branches, respectively. These segmentations are then used to generate 3D models from which the anatomy and the type of the aortic arches can be characterized. A quantitative evaluation of this approach, carried out on various U-Net architectures and different optimizers, leads to satisfactory segmentation results, then allowing a reliable characterization.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Neurovascular pathologies are often treated with the help of imaging to guide catheters inside arteries. However, positioning a microcatheter into the aortic arch and threading it through blood vessels for embolization, mechanical thrombectomy or stenting is a challenging task. Indeed, adverse aortic arch anatomies are frequently encountered, especially when the aortic arch is dilated, or the supra-aortic branches are elongated and tortuous. In this article, we propose a pipeline using convolutional neural networks for the segmentation of the aortic arch from magnetic resonance images for further anatomy classification purpose. This pipeline is composed of two successive modules, dedicated to the localization and the accurate segmentation of the aortic arch and the origin of supra-aortic branches, respectively. These segmentations are then used to generate 3D models from which the anatomy and the type of the aortic arches can be characterized. A quantitative evaluation of this approach, carried out on various U-Net architectures and different optimizers, leads to satisfactory segmentation results, then allowing a reliable characterization.
基于MRA的主动脉弓解剖特征:一种基于cnn的分割方法
神经血管病变通常在动脉内引导导管成像的帮助下治疗。然而,将微导管置入主动脉弓并穿过血管进行栓塞、机械取栓或支架置入是一项具有挑战性的任务。事实上,经常会遇到不利的主动脉弓解剖,特别是当主动脉弓扩张时,或主动脉上分支拉长和弯曲时。在本文中,我们提出了一种使用卷积神经网络的管道,用于从磁共振图像中分割主动脉弓,以进一步进行解剖分类。该管道由两个连续的模块组成,分别用于主动脉弓和主动脉上分支起源的定位和准确分割。这些分割然后用于生成3D模型,从中可以表征解剖结构和主动脉弓的类型。在各种U-Net架构和不同的优化器上对这种方法进行了定量评估,得出了令人满意的分割结果,然后允许进行可靠的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信