Virial identities for nonlinear Schrödinger equations with a critical coefficient inverse-square potential

Toshiyuki Suzuki
{"title":"Virial identities for nonlinear Schrödinger equations with a critical coefficient inverse-square potential","authors":"Toshiyuki Suzuki","doi":"10.7153/DEA-2017-09-24","DOIUrl":null,"url":null,"abstract":"Virial identities for nonlinear Schrödinger equations with some strongly singular potential (a|x|−2 ) are established. Here if a = a(N) :=−(N−2)2/4 , then Pa(N) :=−Δ+a(N)|x|−2 is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1 + Pa(N))) does not coincide with H1(RN ) . Thus justification of the virial identities has a lot of difficulties. The identities can be applicable for showing blow-up in finite time and for proving the existence of scattering states. Mathematics subject classification (2010): 35Q55, 35Q40, 81Q15.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"1 1","pages":"327-352"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2017-09-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Virial identities for nonlinear Schrödinger equations with some strongly singular potential (a|x|−2 ) are established. Here if a = a(N) :=−(N−2)2/4 , then Pa(N) :=−Δ+a(N)|x|−2 is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1 + Pa(N))) does not coincide with H1(RN ) . Thus justification of the virial identities has a lot of difficulties. The identities can be applicable for showing blow-up in finite time and for proving the existence of scattering states. Mathematics subject classification (2010): 35Q55, 35Q40, 81Q15.
具有临界系数平方反比势的非线性Schrödinger方程的维里恒等式
建立了具有强奇异势(a|x|−2)的非线性Schrödinger方程的维里恒等式。若a = a(N):=−(N−2)2/4,则Pa(N):=−Δ+a(N)|x|−2在Friedrichs推广意义上是非负自伴的。但能量类D((1 + Pa(N))与H1(RN)不重合。因此,虚拟身份的正当化存在很多困难。该恒等式可用于表示有限时间内的爆炸和证明散射态的存在。数学学科分类(2010):35Q55、35Q40、81Q15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信