{"title":"Virial identities for nonlinear Schrödinger equations with a critical coefficient inverse-square potential","authors":"Toshiyuki Suzuki","doi":"10.7153/DEA-2017-09-24","DOIUrl":null,"url":null,"abstract":"Virial identities for nonlinear Schrödinger equations with some strongly singular potential (a|x|−2 ) are established. Here if a = a(N) :=−(N−2)2/4 , then Pa(N) :=−Δ+a(N)|x|−2 is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1 + Pa(N))) does not coincide with H1(RN ) . Thus justification of the virial identities has a lot of difficulties. The identities can be applicable for showing blow-up in finite time and for proving the existence of scattering states. Mathematics subject classification (2010): 35Q55, 35Q40, 81Q15.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"1 1","pages":"327-352"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2017-09-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Virial identities for nonlinear Schrödinger equations with some strongly singular potential (a|x|−2 ) are established. Here if a = a(N) :=−(N−2)2/4 , then Pa(N) :=−Δ+a(N)|x|−2 is nonnegative selfadjoint in the sense of Friedrichs extension. But the energy class D((1 + Pa(N))) does not coincide with H1(RN ) . Thus justification of the virial identities has a lot of difficulties. The identities can be applicable for showing blow-up in finite time and for proving the existence of scattering states. Mathematics subject classification (2010): 35Q55, 35Q40, 81Q15.