McKay graphs for alternating and classical groups

M. Liebeck, A. Shalev, P. Tiep
{"title":"McKay graphs for alternating and classical groups","authors":"M. Liebeck, A. Shalev, P. Tiep","doi":"10.1090/TRAN/8395","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group, and $\\alpha$ a nontrivial character of $G$. The McKay graph $\\mathcal{M}(G,\\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\\chi_1$ to $\\chi_2$ if $\\chi_2$ is a constituent of $\\alpha\\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\\hbox{diam}\\,{\\mathcal M}(G,\\alpha) \\le C\\frac{\\log |\\mathsf{A}_n|}{\\log \\alpha(1)}$ for all nontrivial irreducible characters $\\alpha$ of $\\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $G$ be a finite group, and $\alpha$ a nontrivial character of $G$. The McKay graph $\mathcal{M}(G,\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\chi_1$ to $\chi_2$ if $\chi_2$ is a constituent of $\alpha\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$ for all nontrivial irreducible characters $\alpha$ of $\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.
交替群和经典群的McKay图
设$G$是一个有限群,$\alpha$是$G$的一个非平凡特征。McKay图$\mathcal{M}(G,\alpha)$以$G$的不可约特征为顶点,如果$\chi_2$是$\alpha\chi_1$的一个组成部分,则有一条从$\chi_1$到$\chi_2$的边。我们研究了有限简单群的McKay图的直径$G$。对于交替群,我们证明了[LST]中的一个猜想:存在一个绝对常数$C$,使得$\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$对于$\mathsf{A}_n$的所有非平凡不可约字符$\alpha$。对于秩为$r$的辛型或正交型的经典群,我们在所有非平凡McKay图的直径上建立了一个线性上界$Cr$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信