Homological persistence in time series: an application to music classification

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mattia G. Bergomi, A. Baratè
{"title":"Homological persistence in time series: an application to music classification","authors":"Mattia G. Bergomi, A. Baratè","doi":"10.1080/17459737.2020.1786745","DOIUrl":null,"url":null,"abstract":"Meaningful low-dimensional representations of dynamical processes are essential to better understand the mechanisms underlying complex systems, from music composition to learning in both biological and artificial intelligence. We suggest to describe time-varying systems by considering the evolution of their geometrical and topological properties in time, by using a method based on persistent homology. In the static case, persistent homology allows one to provide a representation of a manifold paired with a continuous function as a collection of multisets of points and lines called persistence diagrams. The idea is to fingerprint the change of a variable-geometry space as a time series of persistence diagrams, and afterwards compare such time series by using dynamic time warping. As an application, we express some music features and their time dependency by updating the values of a function defined on a polyhedral surface, called the Tonnetz. Thereafter, we use this time-based representation to automatically classify three collections of compositions according to their style, and discuss the optimal time-granularity for the analysis of different musical genres.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"6 1","pages":"204 - 221"},"PeriodicalIF":0.5000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2020.1786745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

Abstract

Meaningful low-dimensional representations of dynamical processes are essential to better understand the mechanisms underlying complex systems, from music composition to learning in both biological and artificial intelligence. We suggest to describe time-varying systems by considering the evolution of their geometrical and topological properties in time, by using a method based on persistent homology. In the static case, persistent homology allows one to provide a representation of a manifold paired with a continuous function as a collection of multisets of points and lines called persistence diagrams. The idea is to fingerprint the change of a variable-geometry space as a time series of persistence diagrams, and afterwards compare such time series by using dynamic time warping. As an application, we express some music features and their time dependency by updating the values of a function defined on a polyhedral surface, called the Tonnetz. Thereafter, we use this time-based representation to automatically classify three collections of compositions according to their style, and discuss the optimal time-granularity for the analysis of different musical genres.
时间序列的同调持久性:在音乐分类中的应用
动态过程的有意义的低维表示对于更好地理解复杂系统的机制至关重要,从音乐创作到生物和人工智能的学习。我们建议使用一种基于持久同调的方法,通过考虑时变系统的几何和拓扑性质随时间的演变来描述时变系统。在静态情况下,持久同调允许提供与连续函数配对的流形的表示,作为称为持久化图的多组点和线的集合。其思想是将可变几何空间的变化作为持久性图的时间序列进行指纹识别,然后通过使用动态时间扭曲来比较这些时间序列。作为一个应用程序,我们通过更新定义在多面体表面(称为Tonnetz)上的函数的值来表达一些音乐特征及其时间依赖性。然后,我们使用这种基于时间的表示来根据风格自动分类三组作品,并讨论了分析不同音乐类型的最佳时间粒度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信