On pro-$2$ identities of $2\times 2$ linear groups

David el-Chai Ben-Ezra, E. Zelmanov
{"title":"On pro-$2$ identities of $2\\times 2$ linear groups","authors":"David el-Chai Ben-Ezra, E. Zelmanov","doi":"10.1090/TRAN/8327","DOIUrl":null,"url":null,"abstract":"Let $\\hat{F}$ be a free pro-$p$ non-abelian group, and let $\\Delta$ be a local commutative complete ring with a maximal ideal $I$ such that $\\textrm{char}(\\Delta/I)=p$. In [Zu], Zubkov showed that when $p\\neq2$, the pro-$p$ congruence subgroup $GL_{2}^{1}(\\Delta)=\\ker(GL_{2}(\\Delta)\\overset{\\Delta\\to\\Delta/I}{\\longrightarrow}GL_{2}(\\Delta/I))$ admits a pro-$p$ identity. I.e. there exists an element $1\\neq w\\in\\hat{F}$ that vanishes under any continuous homomorphism $\\hat{F}\\to GL_{2}^{1}(\\Delta)$. \nIn this paper we investigate the case $p=2$. The main result is that when $\\textrm{char}(\\Delta)=2$, the pro-$2$ group $GL_{2}^{1}(\\Delta)$ admits a pro-$2$ identity. This result was obtained by the use of trace identities that are originated in PI-theory.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\hat{F}$ be a free pro-$p$ non-abelian group, and let $\Delta$ be a local commutative complete ring with a maximal ideal $I$ such that $\textrm{char}(\Delta/I)=p$. In [Zu], Zubkov showed that when $p\neq2$, the pro-$p$ congruence subgroup $GL_{2}^{1}(\Delta)=\ker(GL_{2}(\Delta)\overset{\Delta\to\Delta/I}{\longrightarrow}GL_{2}(\Delta/I))$ admits a pro-$p$ identity. I.e. there exists an element $1\neq w\in\hat{F}$ that vanishes under any continuous homomorphism $\hat{F}\to GL_{2}^{1}(\Delta)$. In this paper we investigate the case $p=2$. The main result is that when $\textrm{char}(\Delta)=2$, the pro-$2$ group $GL_{2}^{1}(\Delta)$ admits a pro-$2$ identity. This result was obtained by the use of trace identities that are originated in PI-theory.
关于$2\ × 2$线性群的亲$2$恒等式
设$\hat{F}$为自由亲$p$非阿贝尔群,设$\Delta$为具有极大理想$I$的局部可交换完全环,使得$\textrm{char}(\Delta/I)=p$。在[Zu]中,Zubkov证明当$p\neq2$时,亲$p$同余子群$GL_{2}^{1}(\Delta)=\ker(GL_{2}(\Delta)\overset{\Delta\to\Delta/I}{\longrightarrow}GL_{2}(\Delta/I))$承认一个亲$p$同一性。即存在一个元素$1\neq w\in\hat{F}$,它在任何连续同态$\hat{F}\to GL_{2}^{1}(\Delta)$下消失。在本文中,我们调查的情况$p=2$。主要的结果是,当$\textrm{char}(\Delta)=2$,亲$2$组$GL_{2}^{1}(\Delta)$承认一个亲$2$的身份。这个结果是通过使用起源于pi理论的迹恒等式得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信