Overcoming the Weight Transport Problem via Spike-Timing-Dependent Weight Inference

Nasir Ahmad, L. Ambrogioni, M. Gerven
{"title":"Overcoming the Weight Transport Problem via Spike-Timing-Dependent Weight Inference","authors":"Nasir Ahmad, L. Ambrogioni, M. Gerven","doi":"10.51628/001c.27423","DOIUrl":null,"url":null,"abstract":"We propose a solution to the weight transport problem, which questions the biological plausibility of the backpropagation algorithm. We derive our method based upon a theoretical analysis of the (approximate) dynamics of leaky integrate-and-fire neurons. We show that the use of spike timing alone outcompetes existing biologically plausible methods for synaptic weight inference in spiking neural network models. Furthermore, our proposed method is more flexible, being applicable to any spiking neuron model, is conservative in how many parameters are required for implementation and can be deployed in an online-fashion with minimal computational overhead. These features, together with its biological plausibility, make it an attractive mechanism underlying weight inference at single synapses.","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.27423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a solution to the weight transport problem, which questions the biological plausibility of the backpropagation algorithm. We derive our method based upon a theoretical analysis of the (approximate) dynamics of leaky integrate-and-fire neurons. We show that the use of spike timing alone outcompetes existing biologically plausible methods for synaptic weight inference in spiking neural network models. Furthermore, our proposed method is more flexible, being applicable to any spiking neuron model, is conservative in how many parameters are required for implementation and can be deployed in an online-fashion with minimal computational overhead. These features, together with its biological plausibility, make it an attractive mechanism underlying weight inference at single synapses.
利用峰值时间相关权重推断克服权重传输问题
我们提出了一个解决重量传输问题的方法,该问题质疑反向传播算法的生物学合理性。我们推导出我们的方法基于理论分析(近似)动力学的漏整合和火神经元。我们表明,在尖峰神经网络模型中,单独使用尖峰时序胜过现有的生物学上合理的突触权重推断方法。此外,我们提出的方法更加灵活,适用于任何尖峰神经元模型,在实现所需参数的数量上是保守的,并且可以以最小的计算开销以在线方式部署。这些特征,加上其生物学上的合理性,使其成为单突触权重推断的一个有吸引力的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信