Hammam AlMakadma, Joseph Kei, David Yeager, M Patrick Feeney
{"title":"Fundamental Concepts for Assessment and Interpretation of Wideband Acoustic Immittance Measurements.","authors":"Hammam AlMakadma, Joseph Kei, David Yeager, M Patrick Feeney","doi":"10.1055/s-0043-1763293","DOIUrl":null,"url":null,"abstract":"<p><p>Assessment of middle ear impedance using noninvasive electroacoustic measurements has undergone successive developments since its first clinical application in the 1940s, and gained widespread adoption since the 1970s in the form of 226-Hz tympanometry, and applications in multifrequency tympanometry. More recently, wideband acoustic immittance (WAI) is allowing unprecedented assessments of the middle ear acoustic mechanics thanks to the ability to record responses over a wide range of frequencies. The purpose of this article is to present fundamental concepts for the assessment and interpretation of wideband measures, including a review of acoustic impedance and its relation to the mass, stiffness, and resistance components of the middle ear. Additionally, an understanding of the middle ear transfer function reveals the relationship between impedance and middle-ear gain as a function of frequency. Wideband power absorbance, a WAI measure, quantifies the efficiency of sound conduction through the middle ear over a wide range of frequencies, and can serve as an analogous clinical measure to the transfer function. The interpretation of absorbance measures in ears with or without a conductive condition using absorbance measured at ambient pressure and pressurized conditions (wideband tympanometry) is described using clinical case examples. This article serves as an introduction to the fundamental principles of WAI measurements.</p>","PeriodicalId":53691,"journal":{"name":"Seminars in Hearing","volume":"44 1","pages":"17-28"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014203/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Hearing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1763293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 2
Abstract
Assessment of middle ear impedance using noninvasive electroacoustic measurements has undergone successive developments since its first clinical application in the 1940s, and gained widespread adoption since the 1970s in the form of 226-Hz tympanometry, and applications in multifrequency tympanometry. More recently, wideband acoustic immittance (WAI) is allowing unprecedented assessments of the middle ear acoustic mechanics thanks to the ability to record responses over a wide range of frequencies. The purpose of this article is to present fundamental concepts for the assessment and interpretation of wideband measures, including a review of acoustic impedance and its relation to the mass, stiffness, and resistance components of the middle ear. Additionally, an understanding of the middle ear transfer function reveals the relationship between impedance and middle-ear gain as a function of frequency. Wideband power absorbance, a WAI measure, quantifies the efficiency of sound conduction through the middle ear over a wide range of frequencies, and can serve as an analogous clinical measure to the transfer function. The interpretation of absorbance measures in ears with or without a conductive condition using absorbance measured at ambient pressure and pressurized conditions (wideband tympanometry) is described using clinical case examples. This article serves as an introduction to the fundamental principles of WAI measurements.
期刊介绍:
Seminars in Hearing is a quarterly review journal that publishes topic-specific issues in the field of audiology including areas such as hearing loss, auditory disorders and psychoacoustics. The journal presents the latest clinical data, new screening and assessment techniques, along with suggestions for improving patient care in a concise and readable forum. Technological advances with regards to new auditory devices are also featured. The journal"s content is an ideal reference for both the practicing audiologist as well as an excellent educational tool for students who require the latest information on emerging techniques and areas of interest in the field.