Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferation related genes in U87 glioma cells

IF 0.7
O. Minchenko, D. O. Tsymbal, D. Minchenko, M. Moenner, O. V. Kovalevska, N. M. Lypova
{"title":"Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferation related genes in U87 glioma cells","authors":"O. Minchenko, D. O. Tsymbal, D. Minchenko, M. Moenner, O. V. Kovalevska, N. M. Lypova","doi":"10.1515/ersc-2015-0002","DOIUrl":null,"url":null,"abstract":"Abstract Inhibition of ERN1/IRE1α (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme-1α), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F1), and HOXC6 (homeobox C6) in U87 glioma cells overexpressing dominant-negative ERN1/IRE1α defective in endoribonuclease (dnr-ERN1) as well as defective in both kinase and endonuclease (dn-ERN1) activity of ERN1/IRE1α. We have demonstrated that the expression of all studied genes is decreased at the mRNA level in cells with modified ERN1/IRE1α; TBX3, however, is increased in these cells as compared to control glioma cells. Changes in protein levels of E2F8, HOXC6, ATF3, and TBX3 corresponded to changes in mRNAs levels. We also found that two mutated ERN1/IRE1α have differential effects on the expression of studied transcripts. The presence of kinase and endonuclease deficient ERN1/IRE1α in glioma cells had a less profound effect on the expression of E2F8, HOXC6, and TBX3 genes than the blockade of the endoribonuclease activity of ERN1/IRE1α alone. Kinase and endonuclease deficient ERN1/IRE1α suppresses ATF3 and FOXF1 gene expressions, while inhibition of only endoribonuclease of ERN1/IRE1α leads to the up-regulation of these gene transcripts. The present study demonstrates that fine-tuning of the expression of proliferation related genes is regulated by ERN1/IRE1α an effector of endoplasmic reticulum stress. Inhibition of ERN1/IRE1α, especially its endoribonuclease activity, correlates with deregulation of proliferation related genes and thus slower tumor growth.","PeriodicalId":29730,"journal":{"name":"Cell Pathology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ersc-2015-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Abstract Inhibition of ERN1/IRE1α (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme-1α), the major signaling pathway of endoplasmic reticulum stress, significantly decreases tumor growth. We have studied the expression of transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F1), and HOXC6 (homeobox C6) in U87 glioma cells overexpressing dominant-negative ERN1/IRE1α defective in endoribonuclease (dnr-ERN1) as well as defective in both kinase and endonuclease (dn-ERN1) activity of ERN1/IRE1α. We have demonstrated that the expression of all studied genes is decreased at the mRNA level in cells with modified ERN1/IRE1α; TBX3, however, is increased in these cells as compared to control glioma cells. Changes in protein levels of E2F8, HOXC6, ATF3, and TBX3 corresponded to changes in mRNAs levels. We also found that two mutated ERN1/IRE1α have differential effects on the expression of studied transcripts. The presence of kinase and endonuclease deficient ERN1/IRE1α in glioma cells had a less profound effect on the expression of E2F8, HOXC6, and TBX3 genes than the blockade of the endoribonuclease activity of ERN1/IRE1α alone. Kinase and endonuclease deficient ERN1/IRE1α suppresses ATF3 and FOXF1 gene expressions, while inhibition of only endoribonuclease of ERN1/IRE1α leads to the up-regulation of these gene transcripts. The present study demonstrates that fine-tuning of the expression of proliferation related genes is regulated by ERN1/IRE1α an effector of endoplasmic reticulum stress. Inhibition of ERN1/IRE1α, especially its endoribonuclease activity, correlates with deregulation of proliferation related genes and thus slower tumor growth.
抑制ERN1/IRE1α激酶和核糖核酸内切酶活性影响U87胶质瘤细胞增殖相关基因的表达
抑制内质网应激的主要信号通路ERN1/IRE1α(内质网对核信号1/肌醇需要酶-1α)可显著降低肿瘤生长。我们研究了转录因子E2F8 (E2F转录因子8)、EPAS1(内皮PAS结构域蛋白1)、TBX3 (T-box 3)、ATF3(激活转录因子3)、FOXF1(叉头盒F1)、HOXC6(同源盒C6)等转录因子在U87胶质瘤细胞中的表达,这些转录因子在ERN1/IRE1α核糖核酸内切酶缺陷(dnr-ERN1)以及ERN1/IRE1α激酶和内切酶活性缺陷(dn-ERN1)中过表达。我们已经证明,在ERN1/IRE1α修饰的细胞中,所有研究基因的mRNA水平表达均下降;然而,与对照胶质瘤细胞相比,TBX3在这些细胞中增加。E2F8、HOXC6、ATF3和TBX3蛋白水平的变化与mrna水平的变化相对应。我们还发现两个突变的ERN1/IRE1α对所研究的转录本的表达有不同的影响。与单独阻断ERN1/IRE1α核糖核酸内切酶活性相比,胶质瘤细胞中存在激酶和核酸内切酶缺陷ERN1/IRE1α对E2F8、HOXC6和TBX3基因表达的影响较小。激酶和核酸内切酶缺陷ERN1/IRE1α抑制ATF3和FOXF1基因的表达,而仅抑制ERN1/IRE1α核糖内切酶可导致这些基因转录物的上调。本研究表明,ERN1/IRE1α是内质网应激效应因子,可调控增殖相关基因的表达。抑制ERN1/IRE1α,特别是其核糖核酸内切酶活性,与增殖相关基因的失调相关,从而减缓肿瘤生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信