{"title":"Correlating the Community Structure of Constraint Satisfaction Problems with Search Time","authors":"Michel Medema, A. Lazovik","doi":"10.1142/s0218213022600041","DOIUrl":null,"url":null,"abstract":"A constraint satisfaction problem (CSP) is, in its most general form, an NP-complete problem. One of the several classes of tractable problems that exist contains all the problems with a restricted structure of the constraint scopes. This paper studies community structure, a particular type of restricted structure underpinning a class of tractable SAT problems with potentially similar relevance to CSPs. Using the modularity, it explores the community structure of a wide variety of problems with both academic and industrial relevance. Its impact on the search times of several general solvers, as well as one that uses tree-decomposition, is also analysed to determine whether constraint solvers exploit this type of structure. Nearly all CSP instances have a strong community structure, and those belonging to the same class have comparable modularity values. For the general solvers, strong correlations between the community structure and the search times are not apparent. A more definite correlation exists between the modularity and the search times of the tree-decomposition, suggesting that it might, in part, be able to take advantage of the community structure. However, combined with the relatively strong correlation between the modularity and the tree-width, it could also indicate a similarity between these two measures.","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"2 1","pages":"2260004:1-2260004:28"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213022600041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A constraint satisfaction problem (CSP) is, in its most general form, an NP-complete problem. One of the several classes of tractable problems that exist contains all the problems with a restricted structure of the constraint scopes. This paper studies community structure, a particular type of restricted structure underpinning a class of tractable SAT problems with potentially similar relevance to CSPs. Using the modularity, it explores the community structure of a wide variety of problems with both academic and industrial relevance. Its impact on the search times of several general solvers, as well as one that uses tree-decomposition, is also analysed to determine whether constraint solvers exploit this type of structure. Nearly all CSP instances have a strong community structure, and those belonging to the same class have comparable modularity values. For the general solvers, strong correlations between the community structure and the search times are not apparent. A more definite correlation exists between the modularity and the search times of the tree-decomposition, suggesting that it might, in part, be able to take advantage of the community structure. However, combined with the relatively strong correlation between the modularity and the tree-width, it could also indicate a similarity between these two measures.
期刊介绍:
The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools.
Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.