{"title":"Bifurcation diagram of the self-sustained oscillation modes for a system with dynamic symmetry","authors":"L.A. Klimina, B. Ya. Lokshin, V.A. Samsonov","doi":"10.1016/j.jappmathmech.2018.03.012","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>An autonomous dynamical system with one degree of freedom is considered which possesses properties such that an asymptotically </span>stable equilibrium<span> becomes unstable after a certain parameter passes through zero and two new symmetrically arranged equilibria are created alongside it. It is known that, for sufficiently small values of the above mentioned parameter, bifurcation can be accompanied by the occurrence of periodic trajectories (cycles). To describe them, a bifurcation diagram of the relation between the amplitude of the cycles and the parameter, which characterizes the dissipation and takes finite values, is constructed. The results obtained are illustrated using the example of an investigation of the self-induced oscillatory modes in a model of an aerodynamic pendulum that takes account of the displacement of the pressure centre when the </span></span>angle of attack is changed.</p></div>","PeriodicalId":49686,"journal":{"name":"Pmm Journal of Applied Mathematics and Mechanics","volume":"81 6","pages":"Pages 442-449"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2018.03.012","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pmm Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021892818300224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
An autonomous dynamical system with one degree of freedom is considered which possesses properties such that an asymptotically stable equilibrium becomes unstable after a certain parameter passes through zero and two new symmetrically arranged equilibria are created alongside it. It is known that, for sufficiently small values of the above mentioned parameter, bifurcation can be accompanied by the occurrence of periodic trajectories (cycles). To describe them, a bifurcation diagram of the relation between the amplitude of the cycles and the parameter, which characterizes the dissipation and takes finite values, is constructed. The results obtained are illustrated using the example of an investigation of the self-induced oscillatory modes in a model of an aerodynamic pendulum that takes account of the displacement of the pressure centre when the angle of attack is changed.
期刊介绍:
This journal is a cover to cover translation of the Russian journal Prikladnaya Matematika i Mekhanika, published by the Russian Academy of Sciences and reflecting all the major achievements of the Russian School of Mechanics.The journal is concerned with high-level mathematical investigations of modern physical and mechanical problems and reports current progress in this field. Special emphasis is placed on aeronautics and space science and such subjects as continuum mechanics, theory of elasticity, and mathematics of space flight guidance and control.