Sorted Random Projections for robust texture classification

Li Liu, P. Fieguth, Gangyao Kuang, H. Zha
{"title":"Sorted Random Projections for robust texture classification","authors":"Li Liu, P. Fieguth, Gangyao Kuang, H. Zha","doi":"10.1109/ICCV.2011.6126267","DOIUrl":null,"url":null,"abstract":"This paper presents a simple and highly effective system for robust texture classification, based on (1) random local features, (2) a simple global Bag-of-Words (BoW) representation, and (3) Support Vector Machines (SVMs) based classification. The key contribution in this work is to apply a sorting strategy to a universal yet information-preserving random projection (RP) technique, then comparing two different texture image representations (histograms and signatures) with various kernels in the SVMs. We have tested our texture classification system on six popular and challenging texture databases for exemplar based texture classification, comparing with 12 recent state-of-the-art methods. Experimental results show that our texture classification system yields the best classification rates of which we are aware of 99.37% for CUReT, 97.16% for Brodatz, 99.30% for UMD and 99.29% for KTH-TIPS. Moreover, combining random features significantly outperforms the state-of-the-art descriptors in material categorization.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

This paper presents a simple and highly effective system for robust texture classification, based on (1) random local features, (2) a simple global Bag-of-Words (BoW) representation, and (3) Support Vector Machines (SVMs) based classification. The key contribution in this work is to apply a sorting strategy to a universal yet information-preserving random projection (RP) technique, then comparing two different texture image representations (histograms and signatures) with various kernels in the SVMs. We have tested our texture classification system on six popular and challenging texture databases for exemplar based texture classification, comparing with 12 recent state-of-the-art methods. Experimental results show that our texture classification system yields the best classification rates of which we are aware of 99.37% for CUReT, 97.16% for Brodatz, 99.30% for UMD and 99.29% for KTH-TIPS. Moreover, combining random features significantly outperforms the state-of-the-art descriptors in material categorization.
分类随机投影的鲁棒纹理分类
本文提出了一种简单而高效的鲁棒纹理分类系统,该系统基于(1)随机局部特征,(2)简单的全局词袋(BoW)表示,以及(3)基于支持向量机(svm)的分类。本工作的关键贡献是将排序策略应用于通用且保持信息的随机投影(RP)技术,然后比较支持向量机中不同核的两种不同纹理图像表示(直方图和签名)。我们在6个流行且具有挑战性的纹理数据库上测试了我们的纹理分类系统,并与12种最新的最先进的纹理分类方法进行了比较。实验结果表明,我们的纹理分类系统的分类率最高,其中CUReT分类率为99.37%,Brodatz分类率为97.16%,UMD分类率为99.30%,KTH-TIPS分类率为99.29%。此外,结合随机特征在材料分类中显著优于最先进的描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信