{"title":"Lee metrics on groups","authors":"Ricardo A. Podest'a, Maximiliano G. Vides","doi":"10.3934/amc.2023011","DOIUrl":null,"url":null,"abstract":"In this work we consider interval metrics on groups; that is, integral invariant metrics whose associated weight functions do not have gaps. We give conditions for a group to have and to have not interval metrics. Then we study Lee metrics on general groups, that is interval metrics having the finest unitary symmetric associated partition. These metrics generalize the classic Lee metric on cyclic groups. In the case that $G$ is a torsion-free group or a finite group of odd order, we prove that $G$ has a Lee metric if and only if $G$ is cyclic. Also, if $G$ is a group admitting Lee metrics then $G \\times \\mathbb{Z}_2^k$ always have Lee metrics for every $k \\in \\mathbb{N}$. Then, we show that some families of metacyclic groups, such as cyclic, dihedral, and dicyclic groups, always have Lee metrics. Finally, we give conditions for non-cyclic groups such that they do not have Lee metrics. We end with tables of all groups of order $\\le 31$ indicating which of them have (or have not) Lee metrics and why (not).","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2023011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we consider interval metrics on groups; that is, integral invariant metrics whose associated weight functions do not have gaps. We give conditions for a group to have and to have not interval metrics. Then we study Lee metrics on general groups, that is interval metrics having the finest unitary symmetric associated partition. These metrics generalize the classic Lee metric on cyclic groups. In the case that $G$ is a torsion-free group or a finite group of odd order, we prove that $G$ has a Lee metric if and only if $G$ is cyclic. Also, if $G$ is a group admitting Lee metrics then $G \times \mathbb{Z}_2^k$ always have Lee metrics for every $k \in \mathbb{N}$. Then, we show that some families of metacyclic groups, such as cyclic, dihedral, and dicyclic groups, always have Lee metrics. Finally, we give conditions for non-cyclic groups such that they do not have Lee metrics. We end with tables of all groups of order $\le 31$ indicating which of them have (or have not) Lee metrics and why (not).
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.