Smart Battery Cells for Maximum Utilization in Power Electronics Dominated Grids

Alireza Zare, Silvanus D’silva, Muhammad F. Umar, M. Shadmand
{"title":"Smart Battery Cells for Maximum Utilization in Power Electronics Dominated Grids","authors":"Alireza Zare, Silvanus D’silva, Muhammad F. Umar, M. Shadmand","doi":"10.1109/SGRE53517.2022.9774203","DOIUrl":null,"url":null,"abstract":"This paper proposes a control scheme for maximum utilization of smart battery cells based on differential power processing (DPP) for application in power electronics dominated grids (PEDG). It is essential to supply uninterrupted power to critical and non-critical loads by using battery energy storage systems (BESS) in next generation power grid i.e., PEDG. The capability of BESS to provide uninterrupted power is highly dependent on the state of Charge (SOC) of individual battery cells in a battery string. Conventionally, the end of life (EOL) metric of BESS is limited by the battery with lowest SOC. Ultimately, this limitation constraints the total power injection capability of the BESS. In contrast, the proposed scheme estimates the differential power required to support the battery cells with lowest SOCs and thereby ensures a balanced discharge of the BESS. The required differential power is supplied by an auxiliary battery cell interfaced to the BESS via dual active bridge converter (DAB). Thus, the energy availability of the BESS is significantly enhanced while also minimizing the discharge stresses on the weaker battery cells while increasing the battery cell’s lifetime. The performance improvement obtained from the proposed smart battery cells is verified via several case studies. Furthermore, the superiority of the proposed approach is justified by comparing with conventional BESS control approach.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a control scheme for maximum utilization of smart battery cells based on differential power processing (DPP) for application in power electronics dominated grids (PEDG). It is essential to supply uninterrupted power to critical and non-critical loads by using battery energy storage systems (BESS) in next generation power grid i.e., PEDG. The capability of BESS to provide uninterrupted power is highly dependent on the state of Charge (SOC) of individual battery cells in a battery string. Conventionally, the end of life (EOL) metric of BESS is limited by the battery with lowest SOC. Ultimately, this limitation constraints the total power injection capability of the BESS. In contrast, the proposed scheme estimates the differential power required to support the battery cells with lowest SOCs and thereby ensures a balanced discharge of the BESS. The required differential power is supplied by an auxiliary battery cell interfaced to the BESS via dual active bridge converter (DAB). Thus, the energy availability of the BESS is significantly enhanced while also minimizing the discharge stresses on the weaker battery cells while increasing the battery cell’s lifetime. The performance improvement obtained from the proposed smart battery cells is verified via several case studies. Furthermore, the superiority of the proposed approach is justified by comparing with conventional BESS control approach.
在电力电子主导的电网中实现最大利用率的智能电池
提出了一种基于差分功率处理(DPP)的智能电池最大利用率控制方案,并将其应用于电力电子主导电网(PEDG)。在下一代电网即PEDG中,利用电池储能系统(BESS)为关键和非关键负荷提供不间断电力是必不可少的。BESS提供不间断电力的能力高度依赖于电池组中单个电池单元的充电状态(SOC)。传统上,BESS的寿命终止(EOL)指标受到最低SOC电池的限制。最终,这一限制限制了BESS的总功率注入能力。相比之下,所提出的方案估计支持最低soc的电池所需的差分功率,从而确保BESS的平衡放电。所需的差分功率由辅助电池单元通过双有源桥式转换器(DAB)提供。因此,BESS的能量可用性显著增强,同时也最大限度地减少了对较弱电池的放电应力,同时增加了电池的寿命。通过几个案例研究验证了所提出的智能电池的性能改进。此外,通过与传统BESS控制方法的比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
307
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信