Variable Selection of High-Dimensional Spatial Autoregressive Panel Models with Fixed Effects

IF 0.7 Q2 MATHEMATICS
Miaojie Xia, Yuqi Zhang, Ruiqin Tian
{"title":"Variable Selection of High-Dimensional Spatial Autoregressive Panel Models with Fixed Effects","authors":"Miaojie Xia, Yuqi Zhang, Ruiqin Tian","doi":"10.1155/2023/9837117","DOIUrl":null,"url":null,"abstract":"This paper studies the variable selection of high-dimensional spatial autoregressive panel models with fixed effects in which a matrix transformation method is applied to eliminate the fixed effects. Then, a penalized quasi-maximum likelihood is developed for variable selection and parameter estimation in the transformed panel model. Under some regular conditions, the consistency and oracle properties of the proposed estimator are established. Some Monte-Carlo experiments and a real data analysis are conducted to examine the finite sample performance of the proposed variable selection procedure, showing that the proposed variable selection method works satisfactorily.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9837117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the variable selection of high-dimensional spatial autoregressive panel models with fixed effects in which a matrix transformation method is applied to eliminate the fixed effects. Then, a penalized quasi-maximum likelihood is developed for variable selection and parameter estimation in the transformed panel model. Under some regular conditions, the consistency and oracle properties of the proposed estimator are established. Some Monte-Carlo experiments and a real data analysis are conducted to examine the finite sample performance of the proposed variable selection procedure, showing that the proposed variable selection method works satisfactorily.
具有固定效应的高维空间自回归面板模型变量选择
本文研究了具有固定效应的高维空间自回归面板模型的变量选择问题,采用矩阵变换方法消除固定效应。然后,在转换后的面板模型中,提出了一种惩罚拟极大似然模型,用于变量选择和参数估计。在一定条件下,给出了该估计量的一致性和预言性。通过蒙特卡罗实验和实际数据分析验证了所提出的变量选择方法的有限样本性能,结果表明所提出的变量选择方法是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信