K. Hoffmann, C. Laigle, N. E. Chisari, P. Tallada, Y. Dubois, J. Devriendt
{"title":"Disk dominated galaxies retain their shapes below $z = 1.0$","authors":"K. Hoffmann, C. Laigle, N. E. Chisari, P. Tallada, Y. Dubois, J. Devriendt","doi":"10.5167/UZH-193016","DOIUrl":null,"url":null,"abstract":"The high abundance of disk galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their 3D shape distribution in the COSMOS galaxy survey. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. We find a moderate bias for the inferred average disk circularity and relative thickness with respect to the disk radius, but a large bias on the dispersion of these quantities. Applying the 3D shape reconstruction method on COSMOS data, we find no significant dependence of the inferred 3D shape distribution on redshift. The relative disk thickness shows a significant mass dependence which can be accounted for by the scaling of disk radius with galaxy mass. We conclude that the shapes of disk dominated galaxies are overall not subject to disruptive merging or feedback events below redshift $z=1.0$. This favours a scenario where these disks form early and subsequently undergo a tranquil evolution in isolation. In addition, our study shows that the observed 2D shapes of disk dominated galaxies can be well fitted using an ellipsoidal model for the galaxy 3D morphology combined with a Gaussian model for the 3D axes ratio distribution, confirming findings from similar work reported in the literature. Such an approach allows to build realistic mock catalogs with intrinsic galaxy shapes that will be essential for the study of intrinsic galaxy alignment as a contaminant of weak lensing surveys.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-193016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high abundance of disk galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their 3D shape distribution in the COSMOS galaxy survey. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. We find a moderate bias for the inferred average disk circularity and relative thickness with respect to the disk radius, but a large bias on the dispersion of these quantities. Applying the 3D shape reconstruction method on COSMOS data, we find no significant dependence of the inferred 3D shape distribution on redshift. The relative disk thickness shows a significant mass dependence which can be accounted for by the scaling of disk radius with galaxy mass. We conclude that the shapes of disk dominated galaxies are overall not subject to disruptive merging or feedback events below redshift $z=1.0$. This favours a scenario where these disks form early and subsequently undergo a tranquil evolution in isolation. In addition, our study shows that the observed 2D shapes of disk dominated galaxies can be well fitted using an ellipsoidal model for the galaxy 3D morphology combined with a Gaussian model for the 3D axes ratio distribution, confirming findings from similar work reported in the literature. Such an approach allows to build realistic mock catalogs with intrinsic galaxy shapes that will be essential for the study of intrinsic galaxy alignment as a contaminant of weak lensing surveys.