Mike Coffey, Shane Verploegh, Stefan Edstaller, Shawn Armstrong, E. Grossman, Z. Popovic
{"title":"Additive manufactured W-band waveguide components","authors":"Mike Coffey, Shane Verploegh, Stefan Edstaller, Shawn Armstrong, E. Grossman, Z. Popovic","doi":"10.1109/MWSYM.2017.8058625","DOIUrl":null,"url":null,"abstract":"This paper presents several W-band (75–110 GHz) WR-10 waveguide components fabricated using both direct metal laser sintering (DMLS) and stereolithography (SLA), in aluminum, nickel and copper alloys and metal-coated plastic (MCP). The RF performance and surface roughness are measured, and the loss due to surface roughness quantified. The measured loss at 95 GHz ranges from 0.055 dB/cm for the copper-plated plastic waveguides to 0.37 dB/cm for the nickel alloy. From a loss budget study, it is found that standard models do not accurately predict loss due to surface roughness for very rough surfaces. This paper presents the current state-of-the-art in available additive manufactured (AM) waveguide components at W-band.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"62 1","pages":"52-55"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents several W-band (75–110 GHz) WR-10 waveguide components fabricated using both direct metal laser sintering (DMLS) and stereolithography (SLA), in aluminum, nickel and copper alloys and metal-coated plastic (MCP). The RF performance and surface roughness are measured, and the loss due to surface roughness quantified. The measured loss at 95 GHz ranges from 0.055 dB/cm for the copper-plated plastic waveguides to 0.37 dB/cm for the nickel alloy. From a loss budget study, it is found that standard models do not accurately predict loss due to surface roughness for very rough surfaces. This paper presents the current state-of-the-art in available additive manufactured (AM) waveguide components at W-band.