Application of IOT and machine learning in crop protection against animal intrusion

K Balakrishna, Fazil Mohammed, C.R. Ullas, C.M. Hema, S.K. Sonakshi
{"title":"Application of IOT and machine learning in crop protection against animal intrusion","authors":"K Balakrishna,&nbsp;Fazil Mohammed,&nbsp;C.R. Ullas,&nbsp;C.M. Hema,&nbsp;S.K. Sonakshi","doi":"10.1016/j.gltp.2021.08.061","DOIUrl":null,"url":null,"abstract":"<div><p>Animal intrusion is a major threat to the productivity of the crops, which affects food security and reduces the profit to the farmers. This proposed model presents the development of the Internet of Things and Machine learning technique-based solutions to overcome this problem. Raspberry Pi runs the machine algorithm, which is interfaced with the ESP8266 Wireless Fidelity module, Pi Camera, Buzzer, and LED. Machine learning algorithms like Region-based Convolutional Neural Network and Single Shot Detection technology plays an important role to detect the object in the images and classify the animals. The experimentation reveals that the Single Shot Detection algorithm outperforms than Region-based Convolutional Neural Network algorithm. Finally, the Twilio API interfaced software decimates the information to the farmers to take decisive action in their farm field.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"2 2","pages":"Pages 169-174"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gltp.2021.08.061","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X21000893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Animal intrusion is a major threat to the productivity of the crops, which affects food security and reduces the profit to the farmers. This proposed model presents the development of the Internet of Things and Machine learning technique-based solutions to overcome this problem. Raspberry Pi runs the machine algorithm, which is interfaced with the ESP8266 Wireless Fidelity module, Pi Camera, Buzzer, and LED. Machine learning algorithms like Region-based Convolutional Neural Network and Single Shot Detection technology plays an important role to detect the object in the images and classify the animals. The experimentation reveals that the Single Shot Detection algorithm outperforms than Region-based Convolutional Neural Network algorithm. Finally, the Twilio API interfaced software decimates the information to the farmers to take decisive action in their farm field.

物联网和机器学习在作物保护中的应用
动物入侵是农作物生产力的主要威胁,影响粮食安全,减少农民的利润。该模型提出了基于物联网和机器学习技术的解决方案来克服这一问题。树莓派运行机器算法,该算法与ESP8266无线保真度模块、树莓派相机、蜂鸣器和LED接口。基于区域的卷积神经网络和单镜头检测技术等机器学习算法在检测图像中的物体和对动物进行分类方面发挥着重要作用。实验结果表明,单镜头检测算法优于基于区域的卷积神经网络算法。最后,Twilio API接口软件将大量信息提供给农民,以便他们在农场采取果断行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信