Two- and Three-Dimensional Computer Vision Techniques for More Reliable Body Condition Scoring

Q2 Agricultural and Biological Sciences
N. O’Mahony, L. Krpalkova, Gearoid Sayers, Lea Krump, Joseph Walsh, D. Riordan
{"title":"Two- and Three-Dimensional Computer Vision Techniques for More Reliable Body Condition Scoring","authors":"N. O’Mahony, L. Krpalkova, Gearoid Sayers, Lea Krump, Joseph Walsh, D. Riordan","doi":"10.3390/dairy4010001","DOIUrl":null,"url":null,"abstract":"This article identifies the essential technologies and considerations for the development of an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment of Body Condition Score (BCS). We present a comparison of a range of common techniques at the different developmental stages of Computer Vision including data pre-processing and the implementation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras. This research focuses on attaining better reliability from one deployment of an ACMS to the next and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for robustness from one farm to another in the presence of background, farm, herd, camera pose and cow pose variabilities.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

This article identifies the essential technologies and considerations for the development of an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment of Body Condition Score (BCS). We present a comparison of a range of common techniques at the different developmental stages of Computer Vision including data pre-processing and the implementation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras. This research focuses on attaining better reliability from one deployment of an ACMS to the next and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for robustness from one farm to another in the presence of background, farm, herd, camera pose and cow pose variabilities.
二维和三维计算机视觉技术更可靠的身体状况评分
本文确定了开发自动奶牛监测系统(ACMS)的基本技术和注意事项,该系统使用3D相机技术来评估身体状况评分(BCS)。我们比较了计算机视觉不同发展阶段的一系列常用技术,包括数据预处理和3D相机通常捕获的2D和3D数据格式的深度学习实现。本研究侧重于从一个ACMS部署到下一个部署获得更好的可靠性,并提出了一种几何深度学习(GDL)方法,并在背景、农场、牛群、相机姿势和奶牛姿势变量存在的情况下评估模型在一个农场到另一个农场的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dairy Science & Technology
Dairy Science & Technology 农林科学-食品科技
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
2 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信