{"title":"Attractivity analysis on a neoclassical growth system incorporating\n patch structure and multiple pairs of time-varying delays","authors":"\t\tEquations\t\t\tQian Cao","doi":"10.14232/ejqtde.2021.1.76","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the global dynamics of a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays. Firstly, we prove the global existence, positiveness and boundedness of solutions for the addressed system. Secondly, by employing some novel differential inequality analyses and the fluctuation lemma, both delay-independent and delay-dependent criteria are established to ensure that all solutions are convergent to the unique positive equilibrium point, which supplement and improve some existing results. Finally, some numerical examples are afforded to illustrate the effectiveness and feasibility of the theoretical findings.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"51 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2021.1.76","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the global dynamics of a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays. Firstly, we prove the global existence, positiveness and boundedness of solutions for the addressed system. Secondly, by employing some novel differential inequality analyses and the fluctuation lemma, both delay-independent and delay-dependent criteria are established to ensure that all solutions are convergent to the unique positive equilibrium point, which supplement and improve some existing results. Finally, some numerical examples are afforded to illustrate the effectiveness and feasibility of the theoretical findings.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.