G. O. Alcybeev, Dmitriy P. Goloskokov, A. Matrosov
{"title":"The superposition method in the problem of bending of a thin isotropic plate clamped along the contour","authors":"G. O. Alcybeev, Dmitriy P. Goloskokov, A. Matrosov","doi":"10.21638/11701/spbu10.2022.305","DOIUrl":null,"url":null,"abstract":"In this work, the general solution of the differential equation for the bending of a thin isotropic plate under the action of a normal load applied to its plane is constructed by the superposition method. The solutions obtained by the method of initial functions in the form of trigonometric series are taken as two solutions, each of which allows satisfying the boundary conditions on two opposite sides of the plate. Two ways of satisfying the boundary conditions of a clamped plate are studied: the method of expansion into trigonometric Fourier series and the collocation method. It is shown that both methods give the same results and sufficiently fast convergence of the solution at all points of the plate except for small neighborhoods of the corner points. The constructed solution made it possible to study the behavior of the shear force in the corner points. Computational experiments have shown that when keeping 390 terms in the trigonometric series of the solution, the shear force is close to zero, but not identically equal.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, the general solution of the differential equation for the bending of a thin isotropic plate under the action of a normal load applied to its plane is constructed by the superposition method. The solutions obtained by the method of initial functions in the form of trigonometric series are taken as two solutions, each of which allows satisfying the boundary conditions on two opposite sides of the plate. Two ways of satisfying the boundary conditions of a clamped plate are studied: the method of expansion into trigonometric Fourier series and the collocation method. It is shown that both methods give the same results and sufficiently fast convergence of the solution at all points of the plate except for small neighborhoods of the corner points. The constructed solution made it possible to study the behavior of the shear force in the corner points. Computational experiments have shown that when keeping 390 terms in the trigonometric series of the solution, the shear force is close to zero, but not identically equal.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.