Bowditch Taut Spectrum and Dimensions of Groups

Pub Date : 2021-07-22 DOI:10.1307/mmj/20216121
Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana
{"title":"Bowditch Taut Spectrum and Dimensions of Groups","authors":"Eduardo Mart'inez-Pedroza, Luis Jorge S'anchez Saldana","doi":"10.1307/mmj/20216121","DOIUrl":null,"url":null,"abstract":"For a finitely generated group $G$, let $H(G)$ denote Bowditch's taut loop length spectrum. We prove that if $G=(A\\ast B) / \\langle\\!\\langle \\mathcal R \\rangle\\!\\rangle $ is a $C'(1/12)$ small cancellation quotient of a the free product of finitely generated groups, then $H(G)$ is equivalent to $H(A) \\cup H(B)$. We use this result together with bounds for cohomological and geometric dimensions, as well as Bowditch's construction of continuously many non-quasi-isometric $C'(1/6)$ small cancellation $2$-generated groups to obtain our main result: Let $\\mathcal{G}$ denote the class of finitely generated groups. The following subclasses contain continuously many one-ended non-quasi-isometric groups: $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\underline{\\mathrm{cd}}(G) = 2 \\text{ and } \\underline{\\mathrm{gd}}(G) = 3 \\right\\}$ $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\underline{\\underline{\\mathrm{cd}}}(G) = 2 \\text{ and } \\underline{\\underline{\\mathrm{gd}}}(G) = 3 \\right\\}$ $\\bullet\\left\\{G\\in \\mathcal{G} \\colon \\mathrm{cd}_{\\mathbb{Q}}(G)=2 \\text{ and } \\mathrm{cd}_{\\mathbb{Z}}(G)=3 \\right\\}$ On our way to proving the aforementioned results, we show that the classes defined above are closed under taking relatively finitely presented $C'(1/12)$ small cancellation quotients of free products, in particular, this produces new examples of groups exhibiting an Eilenberg-Ganea phenomenon for families. We also show that if there is a finitely presented counter-example to the Eilenberg-Ganea conjecture, then there are continuously many finitely generated one-ended non-quasi-isometric counter-examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a finitely generated group $G$, let $H(G)$ denote Bowditch's taut loop length spectrum. We prove that if $G=(A\ast B) / \langle\!\langle \mathcal R \rangle\!\rangle $ is a $C'(1/12)$ small cancellation quotient of a the free product of finitely generated groups, then $H(G)$ is equivalent to $H(A) \cup H(B)$. We use this result together with bounds for cohomological and geometric dimensions, as well as Bowditch's construction of continuously many non-quasi-isometric $C'(1/6)$ small cancellation $2$-generated groups to obtain our main result: Let $\mathcal{G}$ denote the class of finitely generated groups. The following subclasses contain continuously many one-ended non-quasi-isometric groups: $\bullet\left\{G\in \mathcal{G} \colon \underline{\mathrm{cd}}(G) = 2 \text{ and } \underline{\mathrm{gd}}(G) = 3 \right\}$ $\bullet\left\{G\in \mathcal{G} \colon \underline{\underline{\mathrm{cd}}}(G) = 2 \text{ and } \underline{\underline{\mathrm{gd}}}(G) = 3 \right\}$ $\bullet\left\{G\in \mathcal{G} \colon \mathrm{cd}_{\mathbb{Q}}(G)=2 \text{ and } \mathrm{cd}_{\mathbb{Z}}(G)=3 \right\}$ On our way to proving the aforementioned results, we show that the classes defined above are closed under taking relatively finitely presented $C'(1/12)$ small cancellation quotients of free products, in particular, this produces new examples of groups exhibiting an Eilenberg-Ganea phenomenon for families. We also show that if there is a finitely presented counter-example to the Eilenberg-Ganea conjecture, then there are continuously many finitely generated one-ended non-quasi-isometric counter-examples.
分享
查看原文
Bowditch拉紧谱和群的维数
对于有限生成的群$G$,设$H(G)$表示Bowditch的紧环长度谱。证明了如果$G=(A\ast B) / \langle\!\langle \mathcal R \rangle\!\rangle $是有限生成群的自由积的一个$C'(1/12)$小消商,则$H(G)$等价于$H(A) \cup H(B)$。我们将这一结果与上同维和几何维的界以及Bowditch构造的连续许多非拟等距$C'(1/6)$小消去$2$生成群结合起来,得到了我们的主要结果:设$\mathcal{G}$表示有限生成群的类别。下面的子类包含连续的许多单端非拟等长群:$\bullet\left\{G\in \mathcal{G} \colon \underline{\mathrm{cd}}(G) = 2 \text{ and } \underline{\mathrm{gd}}(G) = 3 \right\}$$\bullet\left\{G\in \mathcal{G} \colon \underline{\underline{\mathrm{cd}}}(G) = 2 \text{ and } \underline{\underline{\mathrm{gd}}}(G) = 3 \right\}$$\bullet\left\{G\in \mathcal{G} \colon \mathrm{cd}_{\mathbb{Q}}(G)=2 \text{ and } \mathrm{cd}_{\mathbb{Z}}(G)=3 \right\}$在我们证明上述结果的过程中,我们证明了上面定义的类在相对有限的情况下是封闭的$C'(1/12)$小的自由积的消商,特别是,这产生了显示家庭的Eilenberg-Ganea现象的群的新例子。我们还证明了如果存在一个有限生成的Eilenberg-Ganea猜想的反例,那么就存在连续多个有限生成的单端非拟等距反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信