{"title":"Control and perturbation in Sturm — Liouville’s problem with discontinuous nonlinearity","authors":"O. Baskov, D. Potapov","doi":"10.21638/11701/spbu10.2023.212","DOIUrl":null,"url":null,"abstract":"We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol’dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"36 4 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Sturm — Liouville problem with discontinuous nonlinearity, control and perturbation. Previously obtained results for equations with a spectral parameter and a discontinuous operator are applied to this problem. By the variational method, we have established theorems on the existence of solutions to the Sturm — Liouville problem with discontinuous nonlinearity and to the optimal control problem, as well as on topological properties of the set of the acceptable “control — state” pairs. A one-dimensional analog of the Gol’dshtik model for separated flows of an incompressible fluid with control and perturbation is given as an application.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.