{"title":"Analysis on Seal Capacity of Magnetic Fluid Seal Using Ring Magnet","authors":"Jiawei Liu, Decai Li","doi":"10.4283/jmag.2022.27.1.056","DOIUrl":null,"url":null,"abstract":"Magnetic fluid seal is one of the most mature applications of magnetic fluid. When the shaft has a large radial runout, the classical pole piece is easily damaged. Due to its small size, the commonly used pole piece structure harbors problems like poor seal performance under a large gap and poor processability. By exploring the distribution law of the magnetic field on the magnet’s surface, we provided theoretical support for the magnetic fluid seal using axially-magnetized ring magnets. New structures for the magnetic fluid seal using axially-mag-netized slotted ring magnets and the magnetic fluid seal using radially-magnetized ring magnets were proposed. Then, comparisons were made between the classical magnetic fluid seal and the magnetic fluid seal using ring magnets. The results revealed that the magnetic fluid seal using axially-magnetized slotted ring magnets and the magnetic fluid seal using radially-magnetized ring magnets exhibited a certain seal capacity, which could replace the classical magnetic fluid seal structure.","PeriodicalId":16147,"journal":{"name":"Journal of Magnetics","volume":"53 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4283/jmag.2022.27.1.056","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Magnetic fluid seal is one of the most mature applications of magnetic fluid. When the shaft has a large radial runout, the classical pole piece is easily damaged. Due to its small size, the commonly used pole piece structure harbors problems like poor seal performance under a large gap and poor processability. By exploring the distribution law of the magnetic field on the magnet’s surface, we provided theoretical support for the magnetic fluid seal using axially-magnetized ring magnets. New structures for the magnetic fluid seal using axially-mag-netized slotted ring magnets and the magnetic fluid seal using radially-magnetized ring magnets were proposed. Then, comparisons were made between the classical magnetic fluid seal and the magnetic fluid seal using ring magnets. The results revealed that the magnetic fluid seal using axially-magnetized slotted ring magnets and the magnetic fluid seal using radially-magnetized ring magnets exhibited a certain seal capacity, which could replace the classical magnetic fluid seal structure.
期刊介绍:
The JOURNAL OF MAGNETICS provides a forum for the discussion of original papers covering the magnetic theory, magnetic materials and their properties, magnetic recording materials and technology, spin electronics, and measurements and applications. The journal covers research papers, review letters, and notes.