Solutions to the non-cutoff Boltzmann equation in the grazing limit

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renjun Duan, Ling-Bing He, Y. Tong, Yu-Long Zhou
{"title":"Solutions to the non-cutoff Boltzmann equation in the grazing limit","authors":"Renjun Duan, Ling-Bing He, Y. Tong, Yu-Long Zhou","doi":"10.4171/aihpc/72","DOIUrl":null,"url":null,"abstract":"It is known that in the parameters range $-2 \\leq \\gamma<-2s$ spectral gap does not exist for the linearized Boltzmann operator without cutoff but it does for the linearized Landau operator. This paper is devoted to the understanding of the formation of spectral gap in this range through the grazing limit. Precisely, we study the Cauchy problems of these two classical collisional kinetic equations around global Maxwellians in torus and establish the following results that are uniform in the vanishing grazing parameter $\\epsilon$: (i) spectral gap type estimates for the collision operators; (ii) global existence of small-amplitude solutions for initial data with low regularity; (iii) propagation of regularity in both space and velocity variables as well as velocity moments without smallness; (iv) global-in-time asymptotics of the Boltzmann solution toward the Landau solution at the rate $O(\\epsilon)$; (v) continuous transition of decay structure of the Boltzmann operator to the Landau operator. In particular, the result in part (v) captures the uniform-in-$\\epsilon$ transition of intrinsic optimal time decay structures of solutions that reveals how the spectrum of the linearized non-cutoff Boltzmann equation in the mentioned parameter range changes continuously under the grazing limit.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/72","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

It is known that in the parameters range $-2 \leq \gamma<-2s$ spectral gap does not exist for the linearized Boltzmann operator without cutoff but it does for the linearized Landau operator. This paper is devoted to the understanding of the formation of spectral gap in this range through the grazing limit. Precisely, we study the Cauchy problems of these two classical collisional kinetic equations around global Maxwellians in torus and establish the following results that are uniform in the vanishing grazing parameter $\epsilon$: (i) spectral gap type estimates for the collision operators; (ii) global existence of small-amplitude solutions for initial data with low regularity; (iii) propagation of regularity in both space and velocity variables as well as velocity moments without smallness; (iv) global-in-time asymptotics of the Boltzmann solution toward the Landau solution at the rate $O(\epsilon)$; (v) continuous transition of decay structure of the Boltzmann operator to the Landau operator. In particular, the result in part (v) captures the uniform-in-$\epsilon$ transition of intrinsic optimal time decay structures of solutions that reveals how the spectrum of the linearized non-cutoff Boltzmann equation in the mentioned parameter range changes continuously under the grazing limit.
放牧极限下非截止玻尔兹曼方程的解
已知,在参数范围内 $-2 \leq \gamma<-2s$ 无截止的线性化玻尔兹曼算子不存在谱隙,但线性化朗道算子存在谱隙。本文致力于通过放牧限制来理解这一范围内光谱间隙的形成。准确地说,我们研究了这两种经典碰撞动力学方程在环面上围绕全局麦克斯韦方程组的柯西问题,并建立了以下结果,这些结果在放牧参数消失时是一致的 $\epsilon$(i)碰撞算子的谱隙类型估计;(ii)低正则性初始数据的小振幅解的全局存在性;(iii)空间和速度变量以及速度矩的规律性传播;(iv)速率下Boltzmann解对Landau解的全局时间渐近性 $O(\epsilon)$;(v)玻耳兹曼算子到朗道算子的衰变结构的连续跃迁。特别地,第(v)部分的结果捕获了统一的$\epsilon$ 解的固有最优时间衰减结构的跃迁,揭示了上述参数范围内线性化非截止玻尔兹曼方程的谱在放牧极限下是如何连续变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信