Complete noncompact Spin(7) manifolds from self-dual Einstein 4–orbifolds

IF 2 1区 数学
Lorenzo Foscolo
{"title":"Complete noncompact Spin(7) manifolds from\nself-dual Einstein 4–orbifolds","authors":"Lorenzo Foscolo","doi":"10.2140/GT.2021.25.339","DOIUrl":null,"url":null,"abstract":"We present an analytic construction of complete non-compact 8-dimensional Ricci-flat manifolds with holonomy Spin(7). The construction relies on the study of the adiabatic limit of metrics with holonomy Spin(7) on principal Seifert circle bundles over asymptotically conical G2 orbifolds. The metrics we produce have an asymptotic geometry, so-called ALC geometry, that generalises to higher dimensions the geometry of 4-dimensional ALF hyperk\\\"ahler metrics. We apply our construction to asymptotically conical G2 metrics arising from self-dual Einstein 4-orbifolds with positive scalar curvature. As illustrative examples of the power of our construction, we produce complete non-compact Spin(7) manifolds with arbitrarily large second Betti number and infinitely many distinct families of ALC Spin(7) metrics on the same smooth 8-manifold.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"7 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.339","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present an analytic construction of complete non-compact 8-dimensional Ricci-flat manifolds with holonomy Spin(7). The construction relies on the study of the adiabatic limit of metrics with holonomy Spin(7) on principal Seifert circle bundles over asymptotically conical G2 orbifolds. The metrics we produce have an asymptotic geometry, so-called ALC geometry, that generalises to higher dimensions the geometry of 4-dimensional ALF hyperk\"ahler metrics. We apply our construction to asymptotically conical G2 metrics arising from self-dual Einstein 4-orbifolds with positive scalar curvature. As illustrative examples of the power of our construction, we produce complete non-compact Spin(7) manifolds with arbitrarily large second Betti number and infinitely many distinct families of ALC Spin(7) metrics on the same smooth 8-manifold.
自对偶爱因斯坦4 -轨道的完全非紧旋(7)流形
给出了具有完整自旋(7)的完全非紧的8维里奇平面流形的解析构造。该构造依赖于对渐近圆锥G2轨道上主Seifert圆束上具有完整自旋(7)的度量的绝热极限的研究。我们产生的度量具有渐近几何,即所谓的ALC几何,它将四维ALF超赫勒度量的几何推广到更高的维度。我们将构造应用于具有正标量曲率的自对偶爱因斯坦4-轨道所产生的渐近圆锥G2度量。我们在同一个光滑的8流形上得到了具有任意大的第二Betti数和无限多个不同的ALC自旋(7)度量族的完全非紧旋(7)流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信