{"title":"TIME-HARMONIC MAXWELL EQUATIONS IN BIOLOGICAL CELLS — THE DIFFERENTIAL FORM FORMALISM TO TREAT THE THIN LAYER","authors":"M. Duruflé, V. Péron, C. Poignard","doi":"10.1142/S1793744211000345","DOIUrl":null,"url":null,"abstract":"We study the behavior of the electromagnetic field in a biological cell modelled by a medium surrounded by a thin layer and embedded in an ambient medium. We derive approximate transmission conditions in order to replace the membrane by these conditions on the boundary of the interior domain. Our approach is essentially geometric and based on a suitable change of variables in the thin layer. Few notions of differential calculus are given in order to obtain the first order conditions in a simple way, and numerical simulations validate the theoretical results. Asymptotic transmission conditions at any order are given in the last section of the paper.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"11 1","pages":"325-357"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793744211000345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11
Abstract
We study the behavior of the electromagnetic field in a biological cell modelled by a medium surrounded by a thin layer and embedded in an ambient medium. We derive approximate transmission conditions in order to replace the membrane by these conditions on the boundary of the interior domain. Our approach is essentially geometric and based on a suitable change of variables in the thin layer. Few notions of differential calculus are given in order to obtain the first order conditions in a simple way, and numerical simulations validate the theoretical results. Asymptotic transmission conditions at any order are given in the last section of the paper.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.