Ugo Dal Lago, C. Faggian, I. Hasuo, Akira Yoshimizu
{"title":"The geometry of synchronization","authors":"Ugo Dal Lago, C. Faggian, I. Hasuo, Akira Yoshimizu","doi":"10.1145/2603088.2603154","DOIUrl":null,"url":null,"abstract":"We graft synchronization onto Girard's Geometry of Interaction in its most concrete form, namely token machines. This is realized by introducing proof-nets for SMLL, an extension of multiplicative linear logic with a specific construct modeling synchronization points, and of a multi-token abstract machine model for it. Interestingly, the correctness criterion ensures the absence of deadlocks along reduction and in the underlying machine, this way linking logical and operational properties.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"29 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We graft synchronization onto Girard's Geometry of Interaction in its most concrete form, namely token machines. This is realized by introducing proof-nets for SMLL, an extension of multiplicative linear logic with a specific construct modeling synchronization points, and of a multi-token abstract machine model for it. Interestingly, the correctness criterion ensures the absence of deadlocks along reduction and in the underlying machine, this way linking logical and operational properties.