Exploring Overall Contextual Information for Image Captioning in Human-Like Cognitive Style

H. Ge, Zehang Yan, Kai Zhang, Mingde Zhao, Liang Sun
{"title":"Exploring Overall Contextual Information for Image Captioning in Human-Like Cognitive Style","authors":"H. Ge, Zehang Yan, Kai Zhang, Mingde Zhao, Liang Sun","doi":"10.1109/ICCV.2019.00184","DOIUrl":null,"url":null,"abstract":"Image captioning is a research hotspot where encoder-decoder models combining convolutional neural network (CNN) and long short-term memory (LSTM) achieve promising results. Despite significant progress, these models generate sentences differently from human cognitive styles. Existing models often generate a complete sentence from the first word to the end, without considering the influence of the following words on the whole sentence generation. In this paper, we explore the utilization of a human-like cognitive style, i.e., building overall cognition for the image to be described and the sentence to be constructed, for enhancing computer image understanding. This paper first proposes a Mutual-aid network structure with Bidirectional LSTMs (MaBi-LSTMs) for acquiring overall contextual information. In the training process, the forward and backward LSTMs encode the succeeding and preceding words into their respective hidden states by simultaneously constructing the whole sentence in a complementary manner. In the captioning process, the LSTM implicitly utilizes the subsequent semantic information contained in its hidden states. In fact, MaBi-LSTMs can generate two sentences in forward and backward directions. To bridge the gap between cross-domain models and generate a sentence with higher quality, we further develop a cross-modal attention mechanism to retouch the two sentences by fusing their salient parts as well as the salient areas of the image. Experimental results on the Microsoft COCO dataset show that the proposed model improves the performance of encoder-decoder models and achieves state-of-the-art results.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"1754-1763"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Image captioning is a research hotspot where encoder-decoder models combining convolutional neural network (CNN) and long short-term memory (LSTM) achieve promising results. Despite significant progress, these models generate sentences differently from human cognitive styles. Existing models often generate a complete sentence from the first word to the end, without considering the influence of the following words on the whole sentence generation. In this paper, we explore the utilization of a human-like cognitive style, i.e., building overall cognition for the image to be described and the sentence to be constructed, for enhancing computer image understanding. This paper first proposes a Mutual-aid network structure with Bidirectional LSTMs (MaBi-LSTMs) for acquiring overall contextual information. In the training process, the forward and backward LSTMs encode the succeeding and preceding words into their respective hidden states by simultaneously constructing the whole sentence in a complementary manner. In the captioning process, the LSTM implicitly utilizes the subsequent semantic information contained in its hidden states. In fact, MaBi-LSTMs can generate two sentences in forward and backward directions. To bridge the gap between cross-domain models and generate a sentence with higher quality, we further develop a cross-modal attention mechanism to retouch the two sentences by fusing their salient parts as well as the salient areas of the image. Experimental results on the Microsoft COCO dataset show that the proposed model improves the performance of encoder-decoder models and achieves state-of-the-art results.
探索类人认知风格下图像字幕的整体语境信息
图像字幕是卷积神经网络(CNN)和长短期记忆(LSTM)相结合的编码器-解码器模型的研究热点,取得了可喜的成果。尽管取得了重大进展,但这些模型生成的句子与人类的认知风格不同。现有的模型经常从第一个单词到最后生成一个完整的句子,而没有考虑后面的单词对整个句子生成的影响。在本文中,我们探索利用一种类似人类的认知方式,即对待描述的图像和待构建的句子建立整体认知,以增强计算机图像理解。本文首先提出了一种利用双向lstm (mbi - lstm)获取整体上下文信息的互助网络结构。在训练过程中,前向lstm和后向lstm通过同时以互补的方式构建整个句子,将后继词和前继词编码到各自的隐藏状态。在标注过程中,LSTM隐式地利用隐藏状态中包含的后续语义信息。事实上,mabi - lstm可以生成正向和反向两个句子。为了弥合跨域模型之间的差距并生成更高质量的句子,我们进一步开发了一种跨模态注意机制,通过融合两个句子的突出部分以及图像的突出区域来修饰两个句子。在Microsoft COCO数据集上的实验结果表明,该模型提高了编码器-解码器模型的性能,达到了最先进的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信