Layered resolutions of Cohen–Macaulay modules

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Eisenbud, I. Peeva
{"title":"Layered resolutions of Cohen–Macaulay modules","authors":"D. Eisenbud, I. Peeva","doi":"10.4171/jems/1024","DOIUrl":null,"url":null,"abstract":"Let S be a Gorenstein local ring and suppose that M is a finitely generated Cohen-Macaulay S-module of codimension c. Given a regular sequence f1, . . . , fc in the annihilator of M we set R = S/(f1, . . . , fc) and construct layered S-free and R-free resolutions of M . The construction inductively reduces the problem to the case of a Cohen-Macaulay module of codimension c 1 and leads to the inductive construction of a higher matrix factorization for M . In the case where M is a su ciently high R-syzygy of some module of finite projective dimension over S, the layered resolutions are minimal and coincide with the resolutions defined from higher matrix factorizations we described in [EP].","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

Abstract

Let S be a Gorenstein local ring and suppose that M is a finitely generated Cohen-Macaulay S-module of codimension c. Given a regular sequence f1, . . . , fc in the annihilator of M we set R = S/(f1, . . . , fc) and construct layered S-free and R-free resolutions of M . The construction inductively reduces the problem to the case of a Cohen-Macaulay module of codimension c 1 and leads to the inductive construction of a higher matrix factorization for M . In the case where M is a su ciently high R-syzygy of some module of finite projective dimension over S, the layered resolutions are minimal and coincide with the resolutions defined from higher matrix factorizations we described in [EP].
Cohen-Macaulay模块的分层分辨率
设S是一个Gorenstein局部环,并设M是余维c的有限生成Cohen-Macaulay S模。给定正则序列f1,…在M的湮灭子中,设R = S/(f1,…), fc),构建M的分层无s和无r分辨率。该构造归纳地将问题简化为余维c1的Cohen-Macaulay模的情况,并导致M的更高矩阵分解的归纳构造。在M是S上有限射影维数的某个模块的足够高的r -协同的情况下,层分辨率是最小的,并且与我们在[EP]中描述的由更高的矩阵分解定义的分辨率一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信