𝕃p solutions of reflected backward stochastic differential equations with jumps

Pub Date : 2020-01-01 DOI:10.1051/ps/2020026
Song Yao
{"title":"𝕃p solutions of reflected backward stochastic differential equations with jumps","authors":"Song Yao","doi":"10.1051/ps/2020026","DOIUrl":null,"url":null,"abstract":"Given p ∈ (1, 2), we study 𝕃p -solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y , z , u ). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p -integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g -evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g -evaluation of reward 𝔏.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given p ∈ (1, 2), we study 𝕃p -solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y , z , u ). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p -integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g -evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g -evaluation of reward 𝔏.
分享
查看原文
𝕃p带跳跃的反射后向随机微分方程的解
给定p∈(1,2),研究了一类具有跳跃的反射后向随机微分方程(RBSDEJ)的𝕃p -解,该方程的发生器g在(y, z, u)中是Lipschitz连续的。基于一般比较定理和跳跃过滤下一致可积过程的最优停止理论,我们证明了这类参数为p可积的RBSDEJ通过不动点参数有唯一𝕃p解。独特的𝕃p解的Y -部分可以看作是反映障碍在g -评估下的斯奈尔包络线,Y第一次满足是奖励的g -评估最大化的最佳停止时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信