{"title":"Composite skin-stiffener debond analyses using fracture mechanics approach with shell elements","authors":"J.T. Wang, I.S. Raju, D.W. Sleight","doi":"10.1016/0961-9526(94)00097-S","DOIUrl":null,"url":null,"abstract":"<div><p>Fracture mechanics analyses of composite skin-stiffener debond configurations using shell elements are presented. Two types of debond configurations are studied: a flange skin strip debond configuration and a skin-stiffener debond configuration. The flange-skin strip configuration examines debond growth perpendicular to the stiffener while the skin-stiffener configuration examines debond growth parallel to the stiffener. Four-node and 9-node shell elements are used to model both debond configurations. The stiffener flange and skin are modeled as two different layers of elements whose translational degrees-of-freedom, in the bonded portion, of the corresponding flange and skin nodes are constrained to be identical. Strain energy release rate formulae are presented for both 4-node and 9-node element models based on the virtual crack closure technique (VCCT). In addition, average values of the strain energy release rates are calculated using a gradient method. The VCCT formulae and the gradient method are used to compute the strain energy release rates (<em>G</em>-values) for both debond configurations. The <em>G</em>-values predicted by these methods are compared with those predicted by plane-strain and 3D finite element analyses. Excellent correlation is obtained among all the analysis results, thus helping to validate the VCCT formulae derived for the 4- and 9-node shell elements.</p></div>","PeriodicalId":100298,"journal":{"name":"Composites Engineering","volume":"5 3","pages":"Pages 277-296"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-9526(94)00097-S","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096195269400097S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Fracture mechanics analyses of composite skin-stiffener debond configurations using shell elements are presented. Two types of debond configurations are studied: a flange skin strip debond configuration and a skin-stiffener debond configuration. The flange-skin strip configuration examines debond growth perpendicular to the stiffener while the skin-stiffener configuration examines debond growth parallel to the stiffener. Four-node and 9-node shell elements are used to model both debond configurations. The stiffener flange and skin are modeled as two different layers of elements whose translational degrees-of-freedom, in the bonded portion, of the corresponding flange and skin nodes are constrained to be identical. Strain energy release rate formulae are presented for both 4-node and 9-node element models based on the virtual crack closure technique (VCCT). In addition, average values of the strain energy release rates are calculated using a gradient method. The VCCT formulae and the gradient method are used to compute the strain energy release rates (G-values) for both debond configurations. The G-values predicted by these methods are compared with those predicted by plane-strain and 3D finite element analyses. Excellent correlation is obtained among all the analysis results, thus helping to validate the VCCT formulae derived for the 4- and 9-node shell elements.