Approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces

IF 1 Q1 MATHEMATICS
Z. Çakir, C. Aykol, V. Guliyev, A. Serbetci
{"title":"Approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces","authors":"Z. Çakir, C. Aykol, V. Guliyev, A. Serbetci","doi":"10.15330/cmp.13.3.750-763","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the best approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces ${\\mathcal{M}}_{p(\\cdot),\\lambda(\\cdot)}(I_{0},w)$, where $w$ is a weight function in the Muckenhoupt $A_{p(\\cdot)}(I_{0})$ class. We get a characterization of $K$-functionals in terms of the modulus of smoothness in the spaces ${\\mathcal{M}}_{p(\\cdot),\\lambda(\\cdot)}(I_{0},w)$. Finally, we prove the direct and inverse theorems of approximation by trigonometric polynomials in the spaces ${\\mathcal{\\widetilde{M}}}_{p(\\cdot),\\lambda(\\cdot)}(I_{0},w),$ the closure of the set of all trigonometric polynomials in ${\\mathcal{M}}_{p(\\cdot),\\lambda(\\cdot)}(I_{0},w)$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.13.3.750-763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate the best approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$, where $w$ is a weight function in the Muckenhoupt $A_{p(\cdot)}(I_{0})$ class. We get a characterization of $K$-functionals in terms of the modulus of smoothness in the spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$. Finally, we prove the direct and inverse theorems of approximation by trigonometric polynomials in the spaces ${\mathcal{\widetilde{M}}}_{p(\cdot),\lambda(\cdot)}(I_{0},w),$ the closure of the set of all trigonometric polynomials in ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$.
变指数加权Morrey空间中的三角多项式逼近
本文研究了变指数加权Morrey空间${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$中三角多项式的最佳逼近,其中$w$是Muckenhoupt $A_{p(\cdot)}(I_{0})$类中的权函数。我们用空间${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$的光滑模来描述$K$-泛函。最后,我们证明了空间${\mathcal{\ widdetilde {M}} {p(\cdot),\lambda(\cdot)}(I_{0},w)中所有三角多项式集合的闭包${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$中三角多项式逼近的正反定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信