{"title":"Synthesis and Characterization of TiC Nanofibers Obtained via a Modified Carbothermal Process","authors":"Chung‐Ying Tsai, K. Mondal","doi":"10.1002/crat.202000231","DOIUrl":null,"url":null,"abstract":"A simple method for synthesis of titanium carbide (TiC) nanofibers by a modified carbothermal reduction of electrospun titanium‐based fibers is reported. The effect of synthesis steps on the final product is discussed. Continuous TiC fibers synthesized have a smooth surface morphology, with average diameter of 148 nm and length in the centimeter range. X‐ray diffraction and high‐resolution transmission electron microscopy analysis results indicate that the fibers consist of TiC of high purity. Impact of heat treatment on the morphology and chemical and crystalline composition of the product is also investigated. Based on the experimental evidence, it is hypothesized that the carbothermal reduction of calcined electrospun fibers with precoated carbon proceeds through diffusion‐limited shrinking core pathway while that of the as‐spun fibers follows the reaction‐limited solution precipitation mechanism. The TiC nanofibers also show superior sintering properties by increasing theoretical density of hot pressed TiB2 from 94.5% of theoretical density to 97.9% of theoretical density. When sintered with ceria, it improves the conductivity of the ceria by 18.29 times as compared to 2.94 times by TiC nanoparticles at 800 °C. The TiC nanofibers show metallic behavior as well as potential for application as electrochemical double layer capacitor supercapacitors.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202000231","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
A simple method for synthesis of titanium carbide (TiC) nanofibers by a modified carbothermal reduction of electrospun titanium‐based fibers is reported. The effect of synthesis steps on the final product is discussed. Continuous TiC fibers synthesized have a smooth surface morphology, with average diameter of 148 nm and length in the centimeter range. X‐ray diffraction and high‐resolution transmission electron microscopy analysis results indicate that the fibers consist of TiC of high purity. Impact of heat treatment on the morphology and chemical and crystalline composition of the product is also investigated. Based on the experimental evidence, it is hypothesized that the carbothermal reduction of calcined electrospun fibers with precoated carbon proceeds through diffusion‐limited shrinking core pathway while that of the as‐spun fibers follows the reaction‐limited solution precipitation mechanism. The TiC nanofibers also show superior sintering properties by increasing theoretical density of hot pressed TiB2 from 94.5% of theoretical density to 97.9% of theoretical density. When sintered with ceria, it improves the conductivity of the ceria by 18.29 times as compared to 2.94 times by TiC nanoparticles at 800 °C. The TiC nanofibers show metallic behavior as well as potential for application as electrochemical double layer capacitor supercapacitors.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing