Integrating Unstructured Data into Relational Databases

I. Mansuri, Sunita Sarawagi
{"title":"Integrating Unstructured Data into Relational Databases","authors":"I. Mansuri, Sunita Sarawagi","doi":"10.1109/ICDE.2006.83","DOIUrl":null,"url":null,"abstract":"In this paper we present a system for automatically integrating unstructured text into a multi-relational database using state-of-the-art statistical models for structure extraction and matching. We show how to extend current highperforming models, Conditional Random Fields and their semi-markov counterparts, to effectively exploit a variety of recognition clues available in a database of entities, thereby significantly reducing the dependence on manually labeled training data. Our system is designed to load unstructured records into columns spread across multiple tables in the database while resolving the relationship of the extracted text with existing column values, and preserving the cardinality and link constraints of the database. We show how to combine the inference algorithms of statistical models with the database imposed constraints for optimal data integration.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"31 1","pages":"29-29"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

In this paper we present a system for automatically integrating unstructured text into a multi-relational database using state-of-the-art statistical models for structure extraction and matching. We show how to extend current highperforming models, Conditional Random Fields and their semi-markov counterparts, to effectively exploit a variety of recognition clues available in a database of entities, thereby significantly reducing the dependence on manually labeled training data. Our system is designed to load unstructured records into columns spread across multiple tables in the database while resolving the relationship of the extracted text with existing column values, and preserving the cardinality and link constraints of the database. We show how to combine the inference algorithms of statistical models with the database imposed constraints for optimal data integration.
将非结构化数据集成到关系数据库中
在本文中,我们提出了一个系统,用于自动集成非结构化文本到一个多关系数据库中,使用最先进的统计模型进行结构提取和匹配。我们展示了如何扩展当前高性能模型,条件随机场及其半马尔可夫对应物,以有效地利用实体数据库中可用的各种识别线索,从而显着减少对手动标记训练数据的依赖。我们的系统旨在将非结构化记录加载到数据库中分布在多个表中的列中,同时解决提取的文本与现有列值的关系,并保留数据库的基数和链接约束。我们展示了如何将统计模型的推理算法与数据库强加的约束相结合,以实现最佳数据集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信