Finiteness and duality for the cohomology of prismatic crystals

IF 1.2 1区 数学 Q1 MATHEMATICS
Yichao Tian
{"title":"Finiteness and duality for the cohomology of prismatic crystals","authors":"Yichao Tian","doi":"10.1515/crelle-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract Let ( A , I ) {(A,I)} be a bounded prism, and let X be a smooth p-adic formal scheme over Spf ⁡ ( A / I ) {\\operatorname{Spf}(A/I)} . We consider the notion of crystals on Bhatt–Scholze’s prismatic site ( X / A ) Δ ⁢ Δ {(X/A)_{{\\kern-0.284528pt{\\Delta}\\kern-5.975079pt{\\Delta}}}} of X relative to A. We prove that if X is proper over Spf ⁡ ( A / I ) {\\operatorname{Spf}(A/I)} of relative dimension n, then the cohomology of a prismatic crystal is a perfect complex of A-modules with tor-amplitude in degrees [ 0 , 2 ⁢ n ] {[0,2n]} . We also establish a Poincaré duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of ( X / A ) Δ ⁢ Δ {(X/A)_{{\\kern-0.284528pt{\\Delta}\\kern-5.975079pt{\\Delta}}}} . The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"42 1","pages":"217 - 257"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Let ( A , I ) {(A,I)} be a bounded prism, and let X be a smooth p-adic formal scheme over Spf ⁡ ( A / I ) {\operatorname{Spf}(A/I)} . We consider the notion of crystals on Bhatt–Scholze’s prismatic site ( X / A ) Δ ⁢ Δ {(X/A)_{{\kern-0.284528pt{\Delta}\kern-5.975079pt{\Delta}}}} of X relative to A. We prove that if X is proper over Spf ⁡ ( A / I ) {\operatorname{Spf}(A/I)} of relative dimension n, then the cohomology of a prismatic crystal is a perfect complex of A-modules with tor-amplitude in degrees [ 0 , 2 ⁢ n ] {[0,2n]} . We also establish a Poincaré duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of ( X / A ) Δ ⁢ Δ {(X/A)_{{\kern-0.284528pt{\Delta}\kern-5.975079pt{\Delta}}}} . The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.
棱镜晶体上同调的有限性和对偶性
摘要设(A,I) {(A,I)}是有界棱镜,设X是Spf (A/I) {\operatorname{Spf}(A/I)}上的光滑p进格式。我们考虑晶体的概念Bhatt-Scholze移动网站(X / A)Δ⁢Δ{(X / A) _ {{\ kern - 0.284528 - ptδ}{\ \ kern - 5.975079 - pt{\三角洲}}}}(X)相对于我们证明,如果X是适当的在Spf⁡(A / I) {\ operatorname {Spf} (A / I)}的相对尺寸n,那么一个移动的上同调水晶是一个完美的复杂的一个模块与tor-amplitude度[0,2⁢n] {[0, 2 n]}。我们还建立了简化棱柱形晶体的poincar对偶性,即(X/ a) Δ¹Δ {(X/ a)_{\kern-0.284528pt{\Delta}\kern-5.975079pt{\Delta}}}}的简化结构束上的晶体。关键因素是用希格斯模对还原棱柱晶体进行明确的局部描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信