KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory

A. Mazza, A. Punzo, Brian McGuire
{"title":"KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory","authors":"A. Mazza, A. Punzo, Brian McGuire","doi":"10.18637/JSS.V058.I06","DOIUrl":null,"url":null,"abstract":"Item response theory (IRT) models are a class of statistical models used to describe the response behaviors of individuals to a set of items having a certain number of options. They are adopted by researchers in social science, particularly in the analysis of performance or attitudinal data, in psychology, education, medicine, marketing and other fields where the aim is to measure latent constructs. Most IRT analyses use parametric models that rely on assumptions that often are not satisfied. In such cases, a nonparametric approach might be preferable; nevertheless, there are not many software applications allowing to use that. To address this gap, this paper presents the R package KernSmoothIRT. It implements kernel smoothing for the estimation of option characteristic curves, and adds several plotting and analytical tools to evaluate the whole test/questionnaire, the items, and the subjects. In order to show the package's capabilities, two real datasets are used, one employing multiple-choice responses, and the other scaled responses.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V058.I06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Item response theory (IRT) models are a class of statistical models used to describe the response behaviors of individuals to a set of items having a certain number of options. They are adopted by researchers in social science, particularly in the analysis of performance or attitudinal data, in psychology, education, medicine, marketing and other fields where the aim is to measure latent constructs. Most IRT analyses use parametric models that rely on assumptions that often are not satisfied. In such cases, a nonparametric approach might be preferable; nevertheless, there are not many software applications allowing to use that. To address this gap, this paper presents the R package KernSmoothIRT. It implements kernel smoothing for the estimation of option characteristic curves, and adds several plotting and analytical tools to evaluate the whole test/questionnaire, the items, and the subjects. In order to show the package's capabilities, two real datasets are used, one employing multiple-choice responses, and the other scaled responses.
KernSmoothIRT:项响应理论中核平滑的R包
项目反应理论(IRT)模型是一类用于描述个体对具有一定数量选项的一组项目的反应行为的统计模型。它们被社会科学的研究人员所采用,特别是在分析表现或态度数据时,在心理学、教育、医学、营销和其他旨在测量潜在构念的领域。大多数IRT分析使用的参数模型依赖于通常不满足的假设。在这种情况下,非参数方法可能更可取;然而,没有多少软件应用程序允许使用它。为了解决这个问题,本文介绍了R包KernSmoothIRT。它实现了对选项特征曲线估计的核平滑,并增加了几个绘图和分析工具来评估整个测试/问卷、项目和受试者。为了展示软件包的功能,使用了两个真实的数据集,一个采用多项选择的回答,另一个采用缩放的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信